High Concentration of Ti3C2Tx MXene in Organic Solvent

被引:234
|
作者
Zhang, Qingxiao [1 ,2 ]
Lai, Huirong [1 ,2 ]
Fan, Runze [1 ,2 ]
Ji, Peiyi [1 ,2 ]
Fu, Xueli [1 ,2 ]
Li, Hui [1 ,2 ]
机构
[1] Shanghai Normal Univ, Shanghai Key Lab Rare Earth Funct Mat, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Educ Minist, Key Lab Resource Chem, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; organic solvent; highly concentrated dispersion; antioxidation; tuned microenvironment method; TRANSITION-METAL CARBIDES; 2-DIMENSIONAL TI3C2; EXFOLIATION; OXIDATION; GRAPHENE; DELAMINATION; NANOSHEETS;
D O I
10.1021/acsnano.0c10671
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes are currently one of the most widely studied two-dimensional materials due to their properties. However, obtaining highly dispersed MXene materials in organic solvent remains a significant challenge for current research. Here, we have developed a method called the tuned microenvironment method (TMM) to prepare a highly concentrated Ti3C2Tx organic solvent dispersion by tuning the microenvironment of Ti3C2Tx. The as-proposed TMM is a simple and efficient approach, as Ti3C2Tx can be dispersed in N,N-dimethylformamide and other solvents by stirring and shaking for a short time, without the need for a sonication step. The delaminated single-layer MXene yield can reach 90% or greater, and a large-scale synthesis has also been demonstrated with TMM by delaminating 30 g of multilayer Ti3C2Tx raw powder in a one-pot synthesis. The synthesized Ti3C2Tx nanosheets dispersed in an organic solvent possess a clean surface, uniform thickness, and large size. The Ti3C2Tx dispersed in an organic solvent exhibits excellent oxidation resistance even under aerobic conditions at room temperature. Through the experimental investigation, the successful preparation of a highly concentrated Ti3C2Tx organic solvent dispersion via TMM can be attributed to the following factors: (1) the intercalation of the cation can lead to the change in the hydrophobicity and surface functionalization of the material; (2) proper solvent properties are required in order to disperse MXene nanosheets well. To demonstrate the applicability of the highly concentrated Ti3C2Tx organic solvent dispersion, a composite fiber with excellent electrical conductivity is prepared via the wet-spinning of a Ti3C2Tx (dispersed in DMF) and polyacrylonitrile mixture. Finally, various types of MXenes, such as Nb2CTx, Nb4C3Tx, and Mo2Ti2C3Tx, can also be prepared as highly concentrated MXene organic solvent dispersions via TMM, which proves the universality of this method. Thus, it is expected that this work demonstrates promising potential in the research of the MXene material family.
引用
收藏
页码:5249 / 5262
页数:14
相关论文
共 50 条
  • [21] Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte
    Lin, Zifeng
    Barbara, Daffos
    Taberna, Pierre-Louis
    Van Aken, Katherine L.
    Anasori, Babak
    Gogotsi, Yury
    Simon, Patrice
    JOURNAL OF POWER SOURCES, 2016, 326 : 575 - 579
  • [22] Highly Efficient Adsorption of Bilirubin by Ti3C2Tx MXene
    Sun, Xiaoyu
    Yang, Jian
    Su, Dawei
    Wang, Chengyin
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) : 1949 - 1955
  • [23] An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield
    Qu, Danyao
    Jian, Yingying
    Guo, Lihao
    Su, Chen
    Tang, Ning
    Zhang, Xingmao
    Hu, Wenwen
    Wang, Zheng
    Zhao, Zhenhuan
    Zhong, Peng
    Li, Peipei
    Du, Tao
    Haick, Hossam
    Wu, Weiwei
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [24] A review of how to improve Ti3C2Tx MXene stability
    Cao, Wei
    Nie, Junli
    Cao, Ye
    Gao, Chengjie
    Wang, Mingsheng
    Wang, Weiwei
    Lu, Xiaoli
    Ma, Xiaohua
    Zhong, Peng
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [25] Scalable Ti3C2Tx MXene Interlayered Forward Osmosis Membranes for Enhanced Water Purification and Organic Solvent Recovery
    Wu, Xing
    Ding, Mingmei
    Xu, Hang
    Yang, Wen
    Zhang, Kaisong
    Tian, Huali
    Wang, Huanting
    Xie, Zongli
    ACS NANO, 2020, 14 (07) : 9125 - 9135
  • [26] Ti3C2Tx MXene as Intriguing Material for Electrochemical Capacitor
    Koudahi, Masoud Foroutan
    Frackowiak, Elzbieta
    SMALL, 2024, 20 (21)
  • [27] Photo-Switchable Nanoripples in Ti3C2Tx MXene
    Volkov, Mikhail
    Willinger, Elena
    Kuznetsov, Denis A.
    Muller, Christoph R.
    Fedorov, Alexey
    Baum, Peter
    ACS NANO, 2021, 15 (09) : 14071 - 14079
  • [28] Preparation, Characterization and Properties of Ti3C2TX MXene Aerogel
    Wu, Junming
    Guan, Hao
    Fan, Yunying
    Xi, Xiaoshuang
    Nie, Fenghao
    Liu, Yichun
    INTEGRATED FERROELECTRICS, 2022, 228 (01) : 254 - 271
  • [29] Electronic properties of freestanding Ti3C2Tx MXene monolayers
    Miranda, A.
    Halim, J.
    Barsoum, M. W.
    Lorke, A.
    APPLIED PHYSICS LETTERS, 2016, 108 (03)
  • [30] Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing
    Wu, Dihua
    Wu, Mengyao
    Yang, Jiehui
    Zhang, Huaiwei
    Xie, Kefeng
    Lin, Cheng-Te
    Yu, Aimin
    Yu, Jinhong
    Fu, Li
    MATERIALS LETTERS, 2019, 236 : 412 - 415