On Free Locally Convex Spaces

被引:1
|
作者
Banakh, Taras [1 ,2 ]
Gabriyelyan, Saak [3 ]
机构
[1] Ivan Franko Natl Univ Lviv, Lvov, Ukraine
[2] Jan Kochanowski Univ, Kielce, Poland
[3] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
(d f)-space; b-feral; c[!sub]0[!/sub]-quasibarrelled; free locally convex space; Grothendieck property;
D O I
10.2298/FIL2218393B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L(X) be the free locally convex space over a Tychonoff space X. We prove that the following assertions are equivalent: (i) every functionally bounded subset of X is finite, (ii) L(X) is semi-reflexive, (iii) L(X) has the Grothendieck property, (iv) L(X) is semi-Montel. We characterize those spaces X, for which L(X) is c0-quasibarrelled, distinguished or a (d f)-space. If X is a convergent sequence, then L(X) has the Glicksberg property, but the space L(X) endowed with its Mackey topology does not have the Schur property.
引用
收藏
页码:6393 / 6401
页数:9
相关论文
共 50 条
  • [41] Locally convex spaces with Toeplitz decompositions
    Paúl, PJ
    Sáez, C
    Virués, JM
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 : 19 - 40
  • [42] PROBLEM OF MOMENTS IN LOCALLY CONVEX SPACES
    RETAKH, VS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 209 (03): : 562 - 564
  • [43] On the super efficiency in locally convex spaces
    Wantao, Fu
    Yonghong, Cheng
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 2001, 44 (06): : 821 - 828
  • [44] METRIZABLE LOCALLY CONVEX-SPACES
    VALDIVIA, M
    [J]. ARCHIV DER MATHEMATIK, 1976, 27 (01) : 79 - 85
  • [45] Drop property on locally convex spaces
    Monterde, Ignacio
    Montesinos, Vicente
    [J]. STUDIA MATHEMATICA, 2008, 185 (02) : 143 - 149
  • [46] PERTURBATION OF SEMIGROUPS ON LOCALLY CONVEX SPACES
    DEMBART, B
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05) : 986 - 991
  • [47] On some locally convex FK spaces
    Leonetti, Paolo
    Orhan, Cihan
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 322
  • [48] HEREDITARY PROPERTY IN LOCALLY CONVEX SPACES
    VALDIVIA, M
    [J]. ANNALES DE L INSTITUT FOURIER, 1971, 21 (02) : 1 - &
  • [49] CONVERGENCE AND LOCALLY CONVEX-SPACES
    MIKUSINSKI, J
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (11): : 1171 - 1173
  • [50] Algebraic splines in locally convex spaces
    Kolesnikov, AP
    [J]. MATHEMATICAL NOTES, 2005, 77 (3-4) : 311 - 325