Spontaneous light-mediated magnetism in cold atoms

被引:18
|
作者
Kresic, I [1 ,2 ,3 ]
Labeyrie, G. [4 ]
Robb, G. R. M. [1 ,2 ]
Oppo, G-L [1 ,2 ]
Gomes, P. M. [1 ,2 ]
Griffin, P. [1 ,2 ]
Kaiser, R. [4 ]
Ackemann, T. [1 ,2 ]
机构
[1] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[3] Inst Phys, Bijenicka Cesta 46, Zagreb 10000, Croatia
[4] Univ Cote dAzur, CNRS, Inst Phys Nice, 1361 Route Lucioles, F-06560 Valbonne, France
来源
COMMUNICATIONS PHYSICS | 2018年 / 1卷
基金
欧盟地平线“2020”;
关键词
COUNTERPROPAGATING LASER-BEAMS; PATTERN-FORMATION; PHASE-TRANSITION; INSTABILITIES; DYNAMICS; VAPOR; GAS; BREAKING; MIRROR; FIELD;
D O I
10.1038/s42005-018-0034-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cold atom setups are now commonly employed in simulations of condensed matter phenomena. We present an approach to induce strong magnetic interactions between atoms on a self-organized lattice using diffraction of light. Diffractive propagation of structured light fields leads to an exchange between phase and amplitude modulated planes which can be used to couple atomic degrees of freedom via optical pumping nonlinearities. In the experiment a cold cloud of Rb atoms placed near a retro-reflecting mirror is driven by a detuned pump laser. We demonstrate spontaneous magnetic ordering in the Zeeman sub-levels of the atomic ground state: anti-ferromagnetic structures on a square lattice and ferrimagnetic structures on a hexagonal lattice in zero and a weak longitudinal magnetic field, respectively. The ordered state is destroyed by a transverse magnetic field via coherent dynamics. A connection to the transverse (quantum) Ising model is drawn.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Light-Mediated Reversible Assembly of Polymeric Colloids
    Elacqua, Elizabeth
    Zheng, Xiaolong
    Weck, Marcus
    ACS MACRO LETTERS, 2017, 6 (10): : 1060 - 1065
  • [32] Towards light-mediated sensing of bacterial comfort
    Zafrilla, G.
    Iglesias, A.
    Marin, M.
    Torralba, L.
    Dorado-Morales, P.
    Racero, J. L.
    Alcaina, J. J.
    Morales, L. J.
    Martinez, L.
    Collantes, M.
    Gomez, L.
    Vilanova, C.
    Porcar, M.
    LETTERS IN APPLIED MICROBIOLOGY, 2014, 59 (02) : 127 - 132
  • [33] Light-mediated antifungal activity of Echinacea extracts
    Binns, SE
    Purgina, B
    Bergeron, C
    Smith, ML
    Ball, L
    Baum, BR
    Arnason, JT
    PLANTA MEDICA, 2000, 66 (03) : 241 - 244
  • [34] Light-mediated Zn uptake in photosynthetic biofilm
    Morris, Jeffrey M.
    Farag, Aida M.
    Nimick, David A.
    Meyer, Joseph S.
    HYDROBIOLOGIA, 2006, 571 (1) : 361 - 371
  • [35] Recent Advances in Visible Light-mediated Fluorination
    Bui, Tien Tan
    Hong, Wan Pyo
    Kim, Hee-Kwon
    JOURNAL OF FLUORINE CHEMISTRY, 2021, 247
  • [36] Light-mediated olefin coordination polymerization and photoswitches
    Li, Mingyuan
    Wang, Ruibin
    Eisen, Moris S.
    Park, Sehoon
    ORGANIC CHEMISTRY FRONTIERS, 2020, 7 (15) : 2088 - 2106
  • [38] Light-mediated control of DNA transcription in yeast
    Hughes, Robert M.
    Bolger, Steven
    Tapadia, Hersh
    Tucker, Chandra L.
    METHODS, 2012, 58 (04) : 385 - 391
  • [39] Enchained by visible light-mediated photoredox catalysis
    Kaerkaes, Markus D.
    Matsuura, Bryan S.
    Stephenson, Corey R. J.
    SCIENCE, 2015, 349 (6254) : 1285 - 1286
  • [40] Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials
    Luo, Xiongfei
    Zhai, Yingxiang
    Wang, Ping
    Tian, Bing
    Liu, Shouxin
    Li, Jian
    Yang, Chenhui
    Strehmel, Veronika
    Li, Shujun
    Matyjaszewski, Krzysztof
    Yilmaz, Gorkem
    Strehmel, Bernd
    Chen, Zhijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)