Natural gradient works efficiently in learning

被引:1807
|
作者
Amari, S [1 ]
机构
[1] RIKEN, Frontier Res Program, Wako, Saitama 35101, Japan
关键词
D O I
10.1162/089976698300017746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When a parameter space has a certain underlying structure, the ordinary gradient of a function does not represent its steepest direction, but the natural gradient does. Information geometry is used for calculating the natural gradients in the parameter space of perceptrons, the space of matrices (for blind source separation), and the space of linear dynamical systems (for blind source deconvolution). The dynamical behavior of natural gradient online learning is analyzed and is proved to be Fisher efficient, implying that it has asymptotically the same performance as the optimal batch estimation of parameters. This suggests that the plateau phenomenon, which appears in the backpropagation learning algorithm of multilayer perceptrons, might disappear or might not be so serious when the natural gradient is used. An adaptive method of updating the learning rate is proposed and analyzed.
引用
收藏
页码:251 / 276
页数:26
相关论文
共 50 条
  • [41] Natural gradient learning neural networks for adaptive inversion of Hammerstein systems
    Ibnkahla, M
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (10) : 315 - 317
  • [42] LEARNING HOW TO STUDY EFFICIENTLY
    CRISCUOLO, NP
    [J]. READING TEACHER, 1984, 37 (08): : 813 - 814
  • [43] Natural policy gradient reinforcement learning for a CPG control of a biped robot
    Nakamura, Y
    Mori, T
    Ishii, S
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 972 - 981
  • [44] An Online Learning Algorithm of Support Vector Regression Based on Natural Gradient
    Yin Huan-ping
    Sun Zong-hai
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 5615 - 5618
  • [45] Natural gradient learning for spatio-temporal decorrelation: Recurrent network
    Choi, S
    Amari, S
    Cichocki, A
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (12) : 2715 - 2722
  • [46] Sketch-Based Empirical Natural Gradient Methods for Deep Learning
    Minghan Yang
    Dong Xu
    Zaiwen Wen
    Mengyun Chen
    Pengxiang Xu
    [J]. Journal of Scientific Computing, 2022, 92
  • [47] Natural gradient learning for second-order nonstationary source separation
    Choi, S
    Cichocki, A
    Amari, S
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 654 - 658
  • [48] Efficiently learning the preferences of people
    Birlutiu, Adriana
    Groot, Perry
    Heskes, Tom
    [J]. MACHINE LEARNING, 2013, 90 (01) : 1 - 28
  • [49] Learning Computational Thinking Efficiently
    Bender, Jeff
    Zhao, Bingpu
    Dziena, Alex
    Kaiser, Gail
    [J]. PROCEEDINGS OF THE 24TH AUSTRALASIAN COMPUTING EDUCATION CONFERENCE, ACE 2022, 2022, : 66 - 75
  • [50] Efficiently learning multilayer perceptrons
    Bunzmann, C
    Biehl, M
    Urbanczik, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (10) : 2166 - 2169