Hierarchical Spatio-Temporal Context Modeling for Action Recognition

被引:0
|
作者
Sun, Ju [1 ]
Wu, Xiao [2 ]
Yan, Shuicheng [3 ]
Cheong, Loong-Fah [3 ]
Chua, Tat-Seng [4 ]
Li, Jintao [2 ]
机构
[1] Natl Univ Singapore, Interact & Digital Media Inst, Singapore 117548, Singapore
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
[4] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of recognizing actions in realistic videos is challenging yet absorbing owing to its great potentials in many practical applications. Most previous research is limited due to the use of simplified action databases under controlled environments or focus on excessively localized features without sufficiently encapsulating the spatio-temporal context. in this paper we propose to model the spatio-temporal context information in a hierarchical way, where three levels of context are exploited in ascending order of abstraction: 1) point-level context (SIFT average descriptor), 2) intra-trajectory context (trajectory transition descriptor), and 3) inter-trajectory context (trajectory proximity descriptor). To obtain efficient and compact representations for the latter two levels, we encode the spatio-temporal context information into the transition matrix of a Markov process, and then extract its stationary distribution as the final context descriptor Building on the multi-channel nonlinear SVMs, we validate this proposed hierarchical framework on the realistic action (HOHA) and event ( LSCOM) recognition databases, and achieve 27% and 66% relative performance improvements over the state-op the-art results, respectively. We further propose to employ the Multiple Kernel Learning (MKL) technique to prune the kernels towards speedup in algorithm evaluation.
引用
收藏
页码:2004 / +
页数:2
相关论文
共 50 条
  • [31] Exploiting spatio-temporal knowledge for video action recognition
    Zhang, Huigang
    Wang, Liuan
    Sun, Jun
    IET COMPUTER VISION, 2023, 17 (02) : 222 - 230
  • [32] ACTION RECOGNITION USING SPATIO-TEMPORAL DIFFERENTIAL MOTION
    Yadav, Gaurav Kumar
    Sethi, Amit
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3415 - 3419
  • [33] Spatio-temporal Semantic Features for Human Action Recognition
    Liu, Jia
    Wang, Xiaonian
    Li, Tianyu
    Yang, Jie
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (10): : 2632 - 2649
  • [34] Interpretable Spatio-temporal Attention for Video Action Recognition
    Meng, Lili
    Zhao, Bo
    Chang, Bo
    Huang, Gao
    Sun, Wei
    Tung, Frederich
    Sigal, Leonid
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1513 - 1522
  • [35] Spatio-Temporal Laplacian Pyramid Coding for Action Recognition
    Shao, Ling
    Zhen, Xiantong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 817 - 827
  • [36] Spatio-temporal shape and flow correlation for action recognition
    Ke, Yan
    Sukthankar, Rahul
    Hebert, Martial
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3835 - +
  • [37] Spatio-Temporal Collaborative Module for Efficient Action Recognition
    Hao, Yanbin
    Wang, Shuo
    Tan, Yi
    He, Xiangnan
    Liu, Zhenguang
    Wang, Meng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7279 - 7291
  • [38] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [39] Human Action Recognition Using Spatio-temporal Classification
    Fang, Chin-Hsien
    Chen, Ju-Chin
    Tseng, Chien-Chung
    Lien, Jenn-Jier James
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 98 - 109
  • [40] Spatio-Temporal Contrastive Learning for Compositional Action Recognition
    Gong, Yezi
    Pei, Mingtao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VII, 2025, 15037 : 424 - 438