Dynamic Detection of Transmission Line Outages Using Hidden Markov Models

被引:33
|
作者
Huang, Qingqing [1 ]
Shao, Leilai [2 ]
Li, Na [3 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
[2] Zhejiang Univ, Very Large Scaled Integrated Circuits Inst, Hangzhou 310027, Zhejiang, Peoples R China
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Cascading failures; fault diagnosis; inference; transmission networks;
D O I
10.1109/TPWRS.2015.2456852
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the problem of detecting transmission line outages in power grids. We model the time series of power network measurements as a hidden Markov process, and formulate the line outage detection problem as an inference problem. Due to the physical nature of the line failure dynamics, the transition probabilities of the hidden Markov Model are sparse. Taking advantage of this fact, we further propose an approximate inference algorithm using particle filtering, which takes in the times series of power network measurements and produces a probabilistic estimation of the status of the transmission line status. We then assess the performance of the proposed algorithm with case studies. We show that it outperforms the conventional static line outage detection algorithms and is robust to both measurement noise and model parameter errors.
引用
收藏
页码:2026 / 2033
页数:8
相关论文
共 50 条
  • [21] Speaker Detection Using Phoneme Specific Hidden Markov Models
    Pakoci, Edvin
    Jakovljevic, Niksa
    Popovic, Branislav
    Miskovic, Dragisa
    Pekar, Darko
    [J]. SPEECH AND COMPUTER, 2014, 8773 : 410 - 417
  • [22] An Improved QRS Detection Method using Hidden Markov Models
    Belkadi, M. A.
    Daamouche, A.
    [J]. 2017 6TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC' 17), 2017, : 81 - 84
  • [23] Fault detection on fluid machinery using Hidden Markov Models
    Arpaia, P.
    Cesaro, U.
    Chadli, M.
    Coppier, H.
    De Vito, L.
    Esposito, A.
    Gargiulo, F.
    Pezzetti, M.
    [J]. MEASUREMENT, 2020, 151
  • [24] Quickest detection of Hidden Markov Models
    Chen, B
    Willett, P
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3984 - 3989
  • [25] Early Detection of Thermoacoustic Instabilities Using Hidden Markov Models
    Mondal, Sudeepta
    Ghalyan, Najah F.
    Ray, Asok
    Mukhopadhyay, Achintya
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2019, 191 (08) : 1309 - 1336
  • [26] Change detection of Hidden Markov Models
    Gerencsér, L
    Molnár-Sáska, G
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1754 - 1758
  • [27] Denoising line edge roughness measurements using Hidden Markov Models
    Papavieros, George
    Constantoudis, Vassilios
    Kontoyiannis, Ioannis
    Gogolides, Evangelos
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [28] Using Hidden Markov Models as a tool for handwritten text line segmentation
    Luethy, Florence
    Varga, Tamas
    Bunke, Horst
    [J]. ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 8 - 12
  • [29] Dynamic graphical models and nonhomogeneous hidden Markov models
    Lacruz, B
    Lasala, P
    Lekuona, A
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 49 (04) : 377 - 385
  • [30] Dynamic facial expression recognition using fuzzy hidden Markov models
    Miners, BW
    Basir, OA
    [J]. INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 1417 - 1422