Dynamic Detection of Transmission Line Outages Using Hidden Markov Models

被引:33
|
作者
Huang, Qingqing [1 ]
Shao, Leilai [2 ]
Li, Na [3 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
[2] Zhejiang Univ, Very Large Scaled Integrated Circuits Inst, Hangzhou 310027, Zhejiang, Peoples R China
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Cascading failures; fault diagnosis; inference; transmission networks;
D O I
10.1109/TPWRS.2015.2456852
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the problem of detecting transmission line outages in power grids. We model the time series of power network measurements as a hidden Markov process, and formulate the line outage detection problem as an inference problem. Due to the physical nature of the line failure dynamics, the transition probabilities of the hidden Markov Model are sparse. Taking advantage of this fact, we further propose an approximate inference algorithm using particle filtering, which takes in the times series of power network measurements and produces a probabilistic estimation of the status of the transmission line status. We then assess the performance of the proposed algorithm with case studies. We show that it outperforms the conventional static line outage detection algorithms and is robust to both measurement noise and model parameter errors.
引用
收藏
页码:2026 / 2033
页数:8
相关论文
共 50 条
  • [1] Dynamic Detection of Transmission Line Outages Using Hidden Markov Models
    Huang, Qingqing
    Shao, Leilai
    Li, Na
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5050 - 5055
  • [2] Transmission Line Fault Classification Using Hidden Markov Models
    Arouche Freire, Jean Carlos
    Garcez Castro, Adriana Rosa
    Homci, Marcia Salomao
    Meiguins, Bianchi Serique
    De Morais, Jefferson Magalhaes
    [J]. IEEE ACCESS, 2019, 7 : 113499 - 113510
  • [3] Cough Detection Using Hidden Markov Models
    Teyhouee, Aydin
    Osgood, Nathaniel D.
    [J]. SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2019, 2019, 11549 : 266 - 276
  • [4] Dynamic IoT Malware Detection in Android Systems Using Profile Hidden Markov Models
    Abanmi, Norah
    Kurdi, Heba
    Alzamel, Mai
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [5] Using Hidden Markov Models in Vehicular Crash Detection
    Singh, Gautam B.
    Song, Haiping
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (03) : 1119 - 1128
  • [6] Riboswitch Detection Using Profile Hidden Markov Models
    Payal Singh
    Pradipta Bandyopadhyay
    Sudha Bhattacharya
    A Krishnamachari
    Supratim Sengupta
    [J]. BMC Bioinformatics, 10
  • [7] Masquerade detection using profile hidden Markov models
    Huang, Lin
    Stamp, Mark
    [J]. COMPUTERS & SECURITY, 2011, 30 (08) : 732 - 747
  • [8] Flame detection in video using hidden Markov models
    Töreyin, BU
    Dedeoglu, Y
    Çetin, AE
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2457 - 2460
  • [9] Helicopter detection and classification using hidden Markov models
    Kuklinski, WS
    O'Neil, SD
    Tromp, LD
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 130 - 139
  • [10] Riboswitch Detection Using Profile Hidden Markov Models
    Singh, Payal
    Bandyopadhyay, Pradipta
    Bhattacharya, Sudha
    Krishnamachari, A.
    Sengupta, Supratim
    [J]. BMC BIOINFORMATICS, 2009, 10