Deep Convolutional AutoEncoder-based Lossy Image Compression

被引:0
|
作者
Cheng, Zhengxue [1 ]
Sun, Heming
Takeuchi, Masaru [1 ]
Katto, Jiro [1 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Tokyo, Japan
关键词
Convolutional autoencoder; Image compression; Deep learning; Principal component analysis;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compression. In this paper, we present a lossy image compression architecture, which utilizes the advantages of convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a novel CAE architecture to replace the conventional transforms and train this CAE using a rate-distortion loss function. Second, to generate a more energy-compact representation, we utilize the principal components analysis (PCA) to rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes. Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a 13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a moderate complexity similar to JPEG2000.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 50 条
  • [41] CONVOLUTIONAL AUTOENCODER ALGORITHM FOR ON-BOARD IMAGE COMPRESSION
    Guerrisi, Giorgia
    Del Frate, Fabio
    Schiavon, Giovanni
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 151 - 154
  • [42] Deep Autoencoder-based Z-Interference Channels
    Zhang, Xinliang
    Vaezi, Mojtaba
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [43] An autoencoder-based deep learning method for genotype imputation
    Song, Meng
    Greenbaum, Jonathan
    Luttrell, Joseph
    Zhou, Weihua
    Wu, Chong
    Luo, Zhe
    Qiu, Chuan
    Zhao, Lan Juan
    Su, Kuan-Jui
    Tian, Qing
    Shen, Hui
    Hong, Huixiao
    Gong, Ping
    Shi, Xinghua
    Deng, Hong-Wen
    Zhang, Chaoyang
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [44] Autoencoder-based Data Compression Model Experiment for Semantic Communication
    Oh, Jinyoung
    Choi, Yunkyung
    Oh, Chanyoung
    Na, Woongsoo
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 553 - 556
  • [45] An Autoencoder-Based Image Reconstruction for Electrical Capacitance Tomography
    Zheng, Jin
    Peng, Lihui
    IEEE SENSORS JOURNAL, 2018, 18 (13) : 5464 - 5474
  • [46] A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
    El-Alami, Fatima-zahra
    El Mahdaouy, Abdelkader
    El Alaoui, Said Ouatik
    En-Nahnahi, Noureddine
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2020, 19 (03): : 381 - 398
  • [47] Deep Morphological Shrinkage Convolutional Autoencoder-Based Feature Learning of Vibration Signals for Gearbox Fault Diagnosis
    Ye, Zhuang
    Yue, Shang
    Yang, Pu
    Zhou, Ruixu
    Yu, Jianbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [48] Autoencoder-Based PPG Compression for Resource-Constrained Device
    Santiwongkarn, Suvichak
    Kornworakarn, Natakorn
    Suksompong, Prapun
    Choksatchawathi, Tanut
    Kaewlee, Thitikorn
    Wilaiprasitporn, Theerawit
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 676 - 680
  • [49] Efficient Lossy Satellite Image Compression using Hybrid Autoencoder Model
    Badr, Mohamed A.
    Elrewainy, Ahmed F.
    Elshafey, Mohamed A.
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 78 - 83
  • [50] Convolutional Autoencoder-Based Phase Shift Feedback Compression for Intelligent Reflecting Surface-Assisted Wireless Systems
    Yu, Xianhua
    Li, Dong
    Xu, Yongjun
    Liang, Ying-Chang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 89 - 93