Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport

被引:35
|
作者
Lapas, L. C.
Costa, I. V. L.
Vainstein, M. H.
Oliveira, F. A.
机构
[1] Univ Brasilia, Int Ctr Condensed Matter Phys, BR-70919970 Brasilia, DF, Brazil
[2] Univ Brasilia, Inst Phys, BR-70919970 Brasilia, DF, Brazil
关键词
D O I
10.1209/0295-5075/77/37004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ballistic transportation introduces new challenges in the thermodynamic properties of a gas of particles. For example, violation of mixing, ergodicity and of the fluctuation-dissipation theorem may occur, since all these processes are connected. In this work, we obtain results for all ranges of diffusion, i.e., both for subdiffusion and superdiffusion, where the bath is such that it gives origin to a colored noise. In this way we obtain the skewness and the non-Gaussian factor for the probability distribution function of the dynamical variable. We put particular emphasis on ballistic diffusion, and we demonstrate that in this case, although the second law of thermodynamics is preserved, the entropy does not reach a maximum and a non-Gaussian behavior occurs. This implies the non-applicability of the central limit theorem.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Localization and non-ergodicity in clustered random networks
    Avetisov V.
    Gorsky A.
    Nechaev S.
    Valba O.
    Valba, O. (ovalba@hse.ru), 2020, Oxford University Press (08) : 1 - 15
  • [22] Quantifying the non-ergodicity of scaled Brownian motion
    Safdari, Hadiseh
    Cherstvy, Andrey G.
    Chechkin, Aleksei V.
    Thiel, Felix
    Sokolov, Igor M.
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (37)
  • [23] Localization and non-ergodicity in clustered random networks
    Avetisov, V
    Gorsky, A.
    Nechaev, S.
    Valba, O.
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (02)
  • [24] Non-ergodicity of Nose-Hoover dynamics
    Legoll, Frederic
    Luskin, Mitchell
    Moeckel, Richard
    NONLINEARITY, 2009, 22 (07) : 1673 - 1694
  • [25] Non-ergodicity and PEER's framework formula
    Der Kiureghian, A
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2005, 34 (13): : 1643 - 1652
  • [26] NON-ERGODICITY OF PHASE FUNCTIONS IN CERTAIN SYSTEMS
    MAZUR, P
    PHYSICA, 1969, 43 (04): : 533 - +
  • [27] Non-Gaussian aspects of heat kernel behaviour
    Davies, EB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 105 - 125
  • [28] Ergodicity Versus Non-Ergodicity for Probabilistic Cellular Automata on Rooted Trees
    Kimura, Bruno
    Ruszel, Wioletta
    Spitoni, Cristian
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (02) : 189 - 215
  • [29] Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Levy noise
    Huang, Zaitang
    Cao, Junfei
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 330 : 1 - 10
  • [30] Non-ergodicity in a locally ordered fragile glass former
    Comez, L.
    Corezzi, S.
    Monaco, G.
    Verbeni, R.
    Fioretto, D.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (42-49) : 4531 - 4535