Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling

被引:60
|
作者
Wu, CW [1 ]
机构
[1] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
chaos; convex programming; coupled oscillators; Lyapunov exponents; Lyapunov functions; nonlinear programming; nonreciprocal coupling; synchronization;
D O I
10.1109/TCSI.2002.808215
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There are, in general, two classes of results regarding the synchronization of chaos in an array of coupled identical chaotic systems. The first class of results relies on Lyapunov's direct method and gives analytical criteria for global or local synchronization. The second class of results relies on linearization around the synchronization manifold and the computation of Lyapunov exponents. The computation of Lyapunov exponents is mainly done via numerical experiments and can only show local synchronization in the neighborhood of the synchronization manifold. On the other hand, Lyapunov's direct method is more rigorous and can give global results. The coupling topology is generally expressed in matrix form and the first class of methods mainly deals with symmetric matrices whereas the second class of methods can work with all diagonalizable matrices. The purpose of this brief is to bridge the gap in the applicability of the two classes of methods by considering the nonsymmetric case-for the first class of methods. We derive a synchronization criterion for nonreciprocal coupling related to a numerical quantity that depends on the coupling topology and we present methods for computing this quantity.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [41] Mixed synchronization in chaotic oscillators using scalar coupling
    Bhowmick, Sourav K.
    Hens, Chittaranjan
    Ghosh, Dibakar
    Dana, Syamal K.
    PHYSICS LETTERS A, 2012, 376 (36) : 2490 - 2495
  • [42] Intermittent lag synchronization in a pair of coupled chaotic oscillators
    Valladares, DL
    Boccaletti, S
    Carusela, MF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (10): : 2699 - 2704
  • [43] Generalized phase synchronization in unidirectionally coupled chaotic oscillators
    Lee, DS
    Kye, WH
    Rim, S
    Kwon, TY
    Kim, CM
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [44] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Acilina Caneco
    Clara Grácio
    J Leonel Rocha
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 102 - 111
  • [45] Generalized synchronization in a system of coupled klystron chaotic oscillators
    A. V. Starodubov
    A. A. Koronovskiĭ
    A. E. Hramov
    Yu. D. Zharkov
    B. S. Dmitriev
    Technical Physics Letters, 2007, 33 : 612 - 615
  • [47] Chaotic synchronization of three coupled oscillators with ring connection
    Kyprianidis, IM
    Stouboulos, IN
    CHAOS SOLITONS & FRACTALS, 2003, 17 (2-3) : 327 - 336
  • [48] Generalized synchronization in a system of coupled klystron chaotic oscillators
    Starodubov, A. V.
    Koronovskii, A. A.
    Hramov, A. E.
    Zharkov, Yu. D.
    Dmitriev, B. S.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (07) : 612 - 615
  • [49] Phase synchronization in coupled chaotic oscillators with time delay
    Chen, JY
    Wong, KW
    Shuai, JW
    PHYSICAL REVIEW E, 2002, 66 (05): : 7
  • [50] Comment on "periodic phase synchronization in coupled chaotic oscillators"
    Pazó, D
    Matías, MA
    PHYSICAL REVIEW E, 2006, 73 (03): : 1 - 2