CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption

被引:189
|
作者
Zhu, Chengzhang [1 ]
Wang, Yuting [1 ]
Jiang, Zhifeng [2 ]
Xu, Fanchao [1 ]
Xian, Qiming [1 ]
Sun, Cheng [1 ]
Tong, Qing [3 ]
Zou, Weixin [3 ]
Duan, Xiaoguang [4 ]
Wang, Shaobin [4 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China
[2] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Nanjing Univ, Ctr Modern Anal, Jiangsu Key Lab Vehicle Emiss Control, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
CeO2; nanocrystals; 2D layered MoS2/g-C3N4; Multi-step electron transfer; Water splitting; H2O reactant adsorption; GRAPHITIC CARBON NITRIDE; Z-SCHEME; AU-CEO2; CATALYSTS; ESCHERICHIA-COLI; ULTRATHIN G-C3N4; DEGRADATION; MOS2; H-2; HETEROJUNCTION; NANOSHEETS;
D O I
10.1016/j.apcatb.2019.118072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (OD) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/gC(3)N(4) still manifested high photocatalytic activity toward H-2 generation, with a rate of 65.4 mu mol/h, which is approximately 8.3 and 17.5-fold greater than gC(3)N(4 )and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/gC(3)N(4) heterojunction could be ascribed to the positive synergetic effects of well-matched energylevel positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/gC(3)N(4) was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/gC(3)N(4)presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Enhanced Visible-Light Photocatalytic Performance of CeO2/g-C3N4 Heterostructured Photocatalyst Induced by Efficient Charge Transfer
    Wang, Liyan
    Hou, Yangwen
    Xiao, Shanshan
    Zhao, Li
    Bi, Fei
    Liu, Zhe
    Chen, Xin
    Li, Yingqi
    Gai, Guangqing
    Yang, Xiaotian
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (06) : 1313 - 1324
  • [42] 2D-2D Heterostructured UNiMOF/g-C3N4 for Enhanced Photocatalytic H2 Production under Visible-Light Irradiation
    Cao, Aihui
    Zhang, Lijuan
    Wang, Yun
    Zhao, Huijun
    Deng, Hong
    Liu, Xueming
    Lin, Zhang
    Su, Xintai
    Yue, Fan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (02): : 2492 - 2499
  • [43] 2D/2D WO3·H2O/g-C3N4 heterostructured assemblies for enhanced photocatalytic water decontamination via strong interfacial contact
    Longfei Li
    Daixun Jiang
    Xilu Wu
    Xun Sun
    Xiaofei Qu
    Liang Shi
    Fanglin Du
    Journal of Materials Science, 2020, 55 : 4238 - 4250
  • [44] 2D/2D WO3•H2O/g-C3N4 heterostructured assemblies for enhanced photocatalytic water decontamination via strong interfacial contact
    Li, Longfei
    Jiang, Daixun
    Wu, Xilu
    Sun, Xun
    Qu, Xiaofei
    Shi, Liang
    Du, Fanglin
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (10) : 4238 - 4250
  • [45] In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution
    Li, Jinmao
    Zhao, Li
    Wang, Shimin
    Li, Jin
    Wang, Guohong
    Wang, Juan
    APPLIED SURFACE SCIENCE, 2020, 515
  • [46] Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites
    Nagaraja, C. M.
    Kaur, Manjodh
    Dhingra, Suman
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) : 8497 - 8506
  • [47] 2D g-C3N4/BiOBr heterojunctions with enhanced visible light photocatalytic activity
    Zhou, Man
    Huang, Wenmao
    Zhao, Yaping
    Jin, Zhihang
    Hua, Xin
    Li, Kai
    Tang, Liping
    Cai, Zaisheng
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (01)
  • [48] 2D g-C3N4/BiOBr heterojunctions with enhanced visible light photocatalytic activity
    Man Zhou
    Wenmao Huang
    Yaping Zhao
    Zhihang Jin
    Xin Hua
    Kai Li
    Liping Tang
    Zaisheng Cai
    Journal of Nanoparticle Research, 2020, 22
  • [49] 0D NiS2 quantum dots modified 2D g-C3N4 for efficient photocatalytic CO2 reduction
    Qin, Hao
    Guo, Rui-Tang
    Liu, Xing-Yu
    Shi, Xu
    Wang, Zhong-Yi
    Tang, Jun-Ying
    Pan, Wei-Guo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 600
  • [50] Constructing 0D FeP Nanodots/2D g-C3N4 Nanosheets Heterojunction for Highly Improved Photocatalytic Hydrogen Evolution
    Zhao, Chengxiao
    Tang, Hua
    Liu, Wei
    Han, Chenhui
    Yang, Xiaofei
    Liu, Qinqin
    Xu, Jingsan
    CHEMCATCHEM, 2019, 11 (24) : 6310 - 6315