Identifying an Optimal Screen Mesh to Enable Augmentorium-Based Enhanced Biological Control of the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae) and the Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephritidae)

被引:2
|
作者
Desurmont, G. A. [1 ]
Tannieres, M. [1 ]
Roche, M. [1 ]
Blanchet, A. [1 ]
Manoukis, N. C. [2 ]
机构
[1] USDA ARS, European Biol Control Lab, Campus Int Baillarguet, Montferrier Sur Lez, France
[2] USDA ARS, Daniel K Inouye US Pacific Basin Agr Res Ctr, Hilo, HI 96720 USA
关键词
conservation biocontrol; augmentorium; pest management; parasitoid; biological control; INTEGRATED PEST-MANAGEMENT;
D O I
10.1093/jisesa/ieac027
中图分类号
Q96 [昆虫学];
学科分类号
摘要
The augmentorium is a cost-effective screened enclosure designed to receive fruits infested with insect pests, retain the pests inside but let their natural enemies escape to enhance biological control of pest populations. Screen selection is critical to ensure that an augmentorium is effective for a particular system. Here we tested five types of screens with a mini-augmentorium design and measured the escape of four insect species under laboratory conditions: the pests olive fruit fly Bactocera oleae (Rossi) (Diptera: Tephritidae) and Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), and the parasitoids Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) and Psyttalia ponerophaga (Silvestri) (Hymenoptera: Braconidae). The sex ratio of insects that escaped the screens was compared to the sex ratio of insects that could not escape. Results showed that one screen type ('crystal mesh') was the best for the purpose of designing a functional augmentorium: it retained 90% of B. oleae adults and 100% of C. capitata adults while letting 72% of Psyttalia lounsburyi adults and 94% of P. ponerophaga adults escape. The other screen types tested were suboptimal, either because they let too many flies freely escape or because they retained too many parasitoids. Sex ratio was almost always similar for insects that managed to escape the screens and insects that were retained, except for P. ponerophaga and the screen type 'light mesh'. These results are promising for the development of a functional augmentorium against the olive fruit fly and further implementation against Mediterranean fruit fly.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Mechanical ecology of fruit-insect interaction in the adult Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae)
    Salerno, Gianandrea
    Rebora, Manuela
    Piersanti, Silvana
    Gorb, Elena
    Gorb, Stanislav
    ZOOLOGY, 2020, 139
  • [22] Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California
    Sime, K. R.
    Daane, K. M.
    Kirk, A.
    Andrews, J. W.
    Johnson, M. W.
    Messing, R. H.
    BULLETIN OF ENTOMOLOGICAL RESEARCH, 2007, 97 (03) : 233 - 242
  • [23] Male Wing Vibration in the Mating Behavior of the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae)
    Benelli, Giovanni
    Canale, Angelo
    Bonsignori, Gabriella
    Ragni, Giacomo
    Stefanini, Cesare
    Raspi, Alfio
    JOURNAL OF INSECT BEHAVIOR, 2012, 25 (06) : 590 - 603
  • [24] Male Wing Vibration in the Mating Behavior of the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae)
    Giovanni Benelli
    Angelo Canale
    Gabriella Bonsignori
    Giacomo Ragni
    Cesare Stefanini
    Alfio Raspi
    Journal of Insect Behavior, 2012, 25 : 590 - 603
  • [25] Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), with a piggyBac transposon vector
    Genc, Hanife
    Schetelig, Marc F.
    Nirmala, Xavier
    Handler, Alfred M.
    TURKISH JOURNAL OF BIOLOGY, 2016, 40 (04) : 845 - 855
  • [26] Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California
    Kakani, Evdoxia G.
    Zygouridis, Nikos E.
    Tsoumani, Konstantina T.
    Seraphides, Nicos
    Zalom, Frank G.
    Mathiopoulos, Kostas D.
    PEST MANAGEMENT SCIENCE, 2010, 66 (04) : 447 - 453
  • [27] The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae)
    Drosopoulou, Elena
    Nakou, Ifigeneia
    Mavragani-Tsipidou, Penelope
    GENOME, 2014, 57 (10) : 573 - 576
  • [28] Yeasts Associated with the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) Lead to New Attractants
    Vitanovic, Elda
    Lopez, Julian M.
    Aldrich, Jeffrey R.
    Jukic Spika, Maja
    Boundy-Mills, Kyria
    Zalom, Frank G.
    AGRONOMY-BASEL, 2020, 10 (10):
  • [29] Evaluation of commercial traps of various designs for capturing the olive fruit fly Bactrocera oleae (Diptera: Tephritidae)
    Eliopoulos, Panagiotis A.
    INTERNATIONAL JOURNAL OF PEST MANAGEMENT, 2007, 53 (03) : 245 - 252
  • [30] Implementing local entomopathogenic nematodes to control Mediterranean fruit fly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae)
    Gozel, Cigdem
    Genc, Hanife
    TURKIYE ENTOMOLOJI DERGISI-TURKISH JOURNAL OF ENTOMOLOGY, 2021, 45 (03): : 389 - 396