Gravity and the noncommutative residue for manifolds with boundary

被引:50
|
作者
Wang, Yong [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
俄罗斯科学基金会;
关键词
noncommutative residue for manifolds with boundary; gravitational action for manifolds with boundary;
D O I
10.1007/s11005-007-0147-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a Kastler-Kalau-Walze type theorem for the Dirac operator and the signature operator for 3, 4-dimensional manifolds with boundary. As a corollary, we give two kinds of operator-theoretic explanations of the gravitational action in the case of 4-dimensional manifolds with flat boundary.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 50 条
  • [21] NONCOMMUTATIVE RESIDUE
    KASSEL, C
    ASTERISQUE, 1989, (177-78) : 199 - 229
  • [22] Noncommutative gravity
    Harikumar, E.
    Rivelles, Victor O.
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (24) : 7551 - 7560
  • [23] Noncommutative gravity
    Chamseddine, AH
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S881 - S887
  • [24] Noncommutative Gravity
    Ali H. Chamseddine
    Annales Henri Poincaré, 2003, 4 : 881 - 887
  • [25] CATEGORIFIED NONCOMMUTATIVE MANIFOLDS
    Martins, R. A. Dawe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (15): : 2802 - 2819
  • [26] An equivariant noncommutative residue
    Dave, Shantanu
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (03) : 709 - 735
  • [27] Quantum gravity boundary terms from the spectral action of noncommutative space
    Chamseddine, Ali H.
    Connes, Alain
    PHYSICAL REVIEW LETTERS, 2007, 99 (07)
  • [28] Noncommutative Hamiltonian formalism for noncommutative gravity 
    Castellani, Leonardo
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (16)
  • [29] THE CANONICAL TRACE AND THE NONCOMMUTATIVE RESIDUE ON THE NONCOMMUTATIVE TORUS
    Levy, Cyril
    Jimenez, Carolina Neira
    Paycha, Sylvie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 1051 - 1095
  • [30] Reality in noncommutative gravity
    Zupnik, B. M.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (01) : 15 - 26