Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia-Reperfusion

被引:84
|
作者
Jang, Sehwan [1 ]
Lewis, Taber S. [2 ]
Powers, Corey [3 ,4 ]
Khuchua, Zaza [3 ,4 ]
Baines, Christopher P. [5 ]
Wipf, Peter [2 ]
Javadov, Sabzali [1 ]
机构
[1] Univ Puerto Rico, Sch Med, Dept Physiol, San Juan, PR 00936 USA
[2] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[3] Cincinnati Childrens Med Ctr, Inst Heart, Cincinnati, OH USA
[4] Univ Cincinnati, Cincinnati, OH USA
[5] Univ Missouri, Dept Biomed Sci, Columbia, MO USA
关键词
mitochondria; cardiac ischemia-reperfusion; ETC supercomplexes; permeability transition pore; cardiolipin; cyclophilin D; PERMEABILITY TRANSITION PORE; COMPLEX-III ACTIVITY; RESPIRATORY-CHAIN; OXIDATIVE-PHOSPHORYLATION; CARDIAC ISCHEMIA; MYOCARDIAL REPERFUSION; KINETIC EVIDENCE; CYCLOSPORINE-A; CYCLOPHILIN-D; CYTOCHROME-C;
D O I
10.1089/ars.2016.6635
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aims: Mitochondrial supercomplexes (SCs) are the large supramolecular assembly of individual electron transport chain (ETC) complexes that apparently provide highly efficient ATP synthesis and reduce electron leakage and reactive oxygen species (ROS) production. Oxidative stress during cardiac ischemia-reperfusion (IR) can result in degradation of SCs through oxidation of cardiolipin (CL). Also, IR induces calcium overload and enhances reactive oxygen species (mitROS) in mitochondria that result in the opening of the nonselective permeability transition pores (PTP). The opening of the PTP further compromises cellular energetics and increases mitROS ultimately leading to cell death. Here, we examined the role of PTP-induced mitROS in disintegration of SCs during cardiac IR. The relationship between mitochondrial PTP, ROS, and SCs was investigated using Langendorff-perfused rat hearts subjected to global ischemia (25 min) followed by short-time (5 min) or long-time (60 min) reperfusion in the presence or absence of the PTP inhibitor, sanglifehrin A (SfA), and the mitochondrial targeted ROS and electron scavenger, XJB-5-131. Also, the effects of CL deficiency on SC degradation, PTP, and mitROS were investigated in tafazzin knockdown (TazKD) mice. Results: Cardiac IR induced PTP opening and mitROS generation, inhibited by SfA. Percent distributions of SCs were significantly affected by IR, and the effects were dependent on the reperfusion time and reversed by SfA and XJB-5-131. TazKD mice demonstrated a 40% lower SC I+III+IV with reduced basal mitochondrial PTP, ROS, and ETC complex activity. Innovation and Conclusion: Sustained reperfusion after cardiac ischemia induces disintegration of mitochondrial SCs, and PTP-induced ROS presumably play a causal role in SC disassembly.
引用
收藏
页码:57 / 69
页数:13
相关论文
共 50 条
  • [41] Mitochondrial redox regulation and myocardial ischemia-reperfusion injury
    Chen, Chwen-Lih
    Zhang, Liwen
    Jin, Zhicheng
    Kasumov, Takhar
    Chen, Yeong-Renn
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2022, 322 (01): : C12 - C23
  • [42] Mitochondrial apoptosis in response to cardiac ischemia-reperfusion injury
    Wang, Kaixin
    Zhu, Qing
    Liu, Wen
    Wang, Linyuan
    Li, Xinxin
    Zhao, Cuiting
    Wu, Nan
    Ma, Chunyan
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [43] Liver ischemia preconditions the heart against ischemia-reperfusion arrhythmias
    Noorbakhsh, Mohammad-Foad
    Arab, Hossein-Ali
    Kazerani, Hamid-Reza
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2015, 18 (01) : 80 - 88
  • [44] Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury
    Wu, Mimi
    Gu, Xiaoping
    Ma, Zhengliang
    MOLECULAR NEUROBIOLOGY, 2021, 58 (10) : 5253 - 5271
  • [45] Roles of Mitochondrial Transplantation in Improving Ischemia-reperfusion Injury
    Zhu, Lin
    Niu, Qi-fang
    Ruan, Han-jin
    Mao, Ming-hui
    Han, Zheng-xue
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (08) : 1894 - 1903
  • [46] Mitochondrial Dynamics: An Emerging Paradigm in Ischemia-Reperfusion Injury
    Calo, Lesley
    Dong, Yi
    Kumar, Rita
    Przyklenk, Karin
    Sanderson, Thomas H.
    CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (39) : 6848 - 6857
  • [47] Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury
    Peng, Jin-Fu
    Salami, Oluwabukunmi Modupe
    Habimana, Olive
    Xie, Yu-Xin
    Yao, Hui
    Yi, Guang-Hui
    CURRENT DRUG TARGETS, 2022, 23 (16) : 1526 - 1536
  • [48] Mitochondrial unfolded protein response in ischemia-reperfusion injury
    Zhu, Ming -Xi
    Ma, Xiao-Fei
    Niu, Xing
    Fan, Gui-bo
    Li, Yan
    BRAIN RESEARCH, 2022, 1797
  • [49] The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury
    Huang, Jie
    Chen, Lei
    Yao, Zi-meng
    Sun, Xiao-rong
    Tong, Xu-hui
    Dong, Shu-ying
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 162
  • [50] Mitochondrial quality control in hepatic ischemia-reperfusion injury
    Wang, LiuSong
    Feng, Zan Jie
    Ma, Xuan
    Li, Kai
    Li, Xin Yao
    Tang, Yi
    Peng, Cijun
    HELIYON, 2023, 9 (07)