Further lower bounds for the smallest singular value

被引:39
|
作者
Johnson, CR [1 ]
Szulc, T
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-60769 Poznan, Poland
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0024-3795(97)00330-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper of the first author, Gersgorin's theorem was used in a novel way to give a simple lower bound for the smallest singular value of a general complex matrix. That lower bound was stronger than previous published bounds. Here, we use three variants of Gersgorin's theorem in a similar way to give further lower bounds. Each of the new bounds is more complicated, but generally stronger, than the pure Gersgorin-based bound. The three new bounds are mutually noncomparable. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 50 条
  • [41] Estimation of ∥A-1∥∞ and the smallest singular value
    Huang, Ting-Zhu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) : 1075 - 1080
  • [42] On the smallest singular value of symmetric random matrices
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    COMBINATORICS PROBABILITY AND COMPUTING, 2022, 31 (04) : 662 - 683
  • [43] Smallest Singular Value of a Random Rectangular Matrix
    Rudelson, Mark
    Vershynin, Roman
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (12) : 1707 - 1739
  • [44] Estimations for the smallest singular value of a Nekrasov matrix
    Dai, Ping-Fan
    Li, Yao-Tang
    Lu, Chang-Jing
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 199 - 202
  • [45] Smallest singular value of sparse random matrices
    Litvak, Alexander E.
    Rivasplata, Omar
    STUDIA MATHEMATICA, 2012, 212 (03) : 195 - 218
  • [46] The Smallest Singular Value of a Shifted Random Matrix
    Xiaoyu Dong
    Journal of Theoretical Probability, 2023, 36 : 2448 - 2475
  • [47] A note on computing the smallest conic singular value
    Chretien, Stephane
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 221 - 230
  • [48] A closer look at some new lower bounds on the minimum singular value of a matrix
    Kaur, Avleen
    Lui, S. H.
    EXAMPLES AND COUNTEREXAMPLES, 2024, 5
  • [49] Lower bounds on the smallest eigenvalue of a sample covariance matrix
    Yaskov, Pavel
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 10
  • [50] Lower bounds on the third smallest Laplacian eigenvalue of a graph
    Pan, YL
    Li, JS
    Hou, YP
    Merris, R
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (03): : 209 - 218