Paraspeckles are constructed as block copolymer micelles

被引:46
|
作者
Yamazaki, Tomohiro [1 ]
Yamamoto, Tetsuya [2 ]
Yoshino, Hyura [3 ]
Souquere, Sylvie [4 ]
Nakagawa, Shinichi [5 ]
Pierron, Gerard [6 ]
Hirose, Tetsuro [1 ,3 ]
机构
[1] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka, Japan
[2] Hokkaido Univ, Inst Chem React Design & Discovery, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ, Inst Med Genet, Sapporo, Hokkaido, Japan
[4] Gustave Roussy, UMS 3655, AMMICA, Villejuif, France
[5] Hokkaido Univ, Fac Pharmaceut Sci, Sapporo, Hokkaido, Japan
[6] Gustave Roussy, CNRS, UMR 9196, Villejuif, France
来源
EMBO JOURNAL | 2021年 / 40卷 / 12期
关键词
biomolecular condensate; block copolymer; long noncoding RNA; micellization; microphase separation; LONG NONCODING RNA; LIQUID PHASE-SEPARATION; NUCLEAR-BODY; BINDING PROTEINS; LNCRNA NEAT1; TRANSCRIPTION; ORGANIZATION; EXPRESSION; POLYMERS; DOMAINS;
D O I
10.15252/embj.2020107270
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Molecule-responsive block copolymer micelles
    Ishihara, Yoshihiro
    Bazzi, Hassan S.
    Toader, Violeta
    Godin, Francois
    Sleiman, Hanadi F.
    CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (16) : 4560 - 4570
  • [32] Metallo-supramolecular block copolymer micelles
    Gohy, JF
    Lohmeijer, BGG
    Schubert, US
    MACROMOLECULES, 2002, 35 (12) : 4560 - 4563
  • [33] Scaling Laws for Block Copolymer Surface Micelles
    Kim, Dong Hyup
    Kim, So Youn
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (24): : 5380 - 5386
  • [34] Rod-coil block copolymer micelles
    Choi, Su Yeon
    Lee, Sle
    Jang, Ae Jung
    Kim, Seung Hyun
    Song, Yun Jung
    Lee, Jae Uk
    Jo, Won Ho
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [35] Scattering form factor of block copolymer micelles
    Pedersen, JS
    Gerstenberg, MC
    MACROMOLECULES, 1996, 29 (04) : 1363 - 1365
  • [36] BLOCK COPOLYMER MICELLES NEAR CRITICAL CONDITIONS
    TUZAR, Z
    STEPANEK, P
    KONAK, C
    KRATOCHVIL, P
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1985, 105 (02) : 372 - 377
  • [37] Block-copolymer micelles with a interpolyelectrolyte crown
    E. A. Lysenko
    R. S. Bilan
    P. S. Chelushkin
    Polymer Science, Series C, 2017, 59 : 35 - 48
  • [38] Block Copolymer Micelles for Photonic Fluids and Crystals
    Poutanen, Mikko
    Guidetti, Giulia
    Groeschel, Tina, I
    Borisov, Oleg, V
    Vignolini, Silvia
    Ikkala, Olli
    Groeschel, Andre H.
    ACS NANO, 2018, 12 (04) : 3149 - 3158
  • [39] INTERACTION BETWEEN BLOCK COPOLYMER MICELLES IN SOLUTION
    KONAK, C
    TUZAR, Z
    STEPANEK, P
    SEDLACEK, B
    KRATOCHVIL, P
    PROGRESS IN COLLOID AND POLYMER SCIENCE, 1985, 71 : 15 - 19
  • [40] Dielectric discontinuity in equilibrium block copolymer micelles
    Korobko, Alexander V.
    Marques, Carlos M.
    Schoeps, Matthias
    Schaelder, Volker
    Wiesner, Ulrich
    Mendes, Eduardo
    SOFT MATTER, 2015, 11 (36) : 7081 - 7085