Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio

被引:6
|
作者
Nababan, A. A. [1 ]
Sitompul, O. S. [2 ]
Tulus [3 ]
机构
[1] Univ Sumatera Utara, Grad Sch Comp Sci, Medan, Indonesia
[2] Univ Sumatera Utara, Fac Comp Sci & Informat Technol, Medan, Indonesia
[3] Univ Sumatera Utara, Dept Math, Medan, Indonesia
关键词
D O I
10.1088/1742-6596/1007/1/012007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
K-Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to mis s-classification of the class assignment for new data. In this research, we proposedAttribute Weighting Based K-Nearest Neighbor Using Gain Rat io as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Novel text classification based on K-nearest neighbor
    Yu, Xiao-Peng
    Yu, Xiao-Gao
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3425 - +
  • [22] Spectral Clustering Based on k-Nearest Neighbor Graph
    Lucinska, Malgorzata
    Wierzchon, Lawomir T.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT (CISIM), 2012, 7564 : 254 - 265
  • [23] Automatic text categorization based on K-nearest neighbor
    Sun, J.
    Wang, W.
    Zhong, Y.-X.
    Beijing Youdian Xueyuan Xuebao/Journal of Beijing University of Posts And Telecommunications, 2001, 24 (01): : 42 - 46
  • [24] MKNN: Modified K-Nearest Neighbor
    Parvin, Hamid
    Alizadeh, Hoscin
    Minael-Bidgoli, Behrouz
    WCECS 2008: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2008, : 831 - 834
  • [25] A GENERALIZED K-NEAREST NEIGHBOR RULE
    PATRICK, EA
    FISCHER, FP
    INFORMATION AND CONTROL, 1970, 16 (02): : 128 - &
  • [26] Improved k-nearest neighbor classification
    Wu, YQ
    Ianakiev, K
    Govindaraju, V
    PATTERN RECOGNITION, 2002, 35 (10) : 2311 - 2318
  • [27] Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
    Tahir, Muhammad Atif
    Bouridane, Ahmed
    Kurugollu, Fatih
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 438 - 446
  • [28] Navigating K-Nearest Neighbor Graphs to Solve Nearest Neighbor Searches
    Chavez, Edgar
    Sadit Tellez, Eric
    ADVANCES IN PATTERN RECOGNITION, 2010, 6256 : 270 - 280
  • [29] A Centroid k-Nearest Neighbor Method
    Zhang, Qingjiu
    Sun, Shiliang
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 278 - 285
  • [30] Quantum K-nearest neighbor algorithm
    Chen, Hanwu
    Gao, Yue
    Zhang, Jun
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2015, 45 (04): : 647 - 651