Lattice-valued preordered sets as lattice-valued topological systems

被引:5
|
作者
Denniston, Jeffrey T. [1 ]
Melton, Austin [2 ]
Rodabaugh, Stephen E. [3 ]
Solovyov, Sergey A. [4 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Kent State Univ, Dept Comp Sci & Math Sci, Kent, OH 44242 USA
[3] Youngstown State Univ, Coll Sci Technol Engn Math STEM, Youngstown, OH 44555 USA
[4] Masaryk Univ, Fac Sci, Dept Math & Stat, CS-61137 Brno, Czech Republic
关键词
Adjoint functor; Alexandroff topology; Coreflective subcategory; (Lattice-valued) preordered set; (Lattice-valued) topological space; (Lattice-valued) topological system; Locale; Quasi-pseudo-metric space; Spatialization procedure; Specialization preorder; Topological category; (Variable-basis) pointfree topology; FUZZY; FOUNDATIONS; ALGEBRA;
D O I
10.1016/j.fss.2014.04.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper provides variable-basis lattice-valued analogues of the well-known results that the construct Prost of preordered sets, firstly, is concretely isomorphic to a full concretely coreflective subcategory of the category Top of topological spaces (which employs the concept of the dual of the specialization preorder), and, secondly, is (non-concretely) isomorphic to a full coreflective subcategory of the category TopSys of topological systems of S. Vickers (which employs the spatialization procedure for topological systems) Dualizing these results, one arrives at the similar properties of quasi-pseudo-metric spaces built over locales. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 50 条
  • [21] Pretopological and topological lattice-valued convergence spaces
    Jaeger, Gunther
    FUZZY SETS AND SYSTEMS, 2007, 158 (04) : 424 - 435
  • [22] Product of lattice-valued measures on topological spaces
    Khurana, Surjit Singh
    MATHEMATICA SLOVACA, 2008, 58 (03) : 309 - 314
  • [23] FUNCTORIAL RELATIONSHIPS BETWEEN LATTICE-VALUED TOPOLOGY AND TOPOLOGICAL SYSTEMS
    Denniston, J. T.
    Rodabaugh, S. E.
    QUAESTIONES MATHEMATICAE, 2009, 32 (02) : 139 - 186
  • [24] On the uniformization of lattice-valued frames
    Gutierrez Garcia, J.
    Mardones-Perez, I.
    Picado, J.
    de Prada Vicente, M. A.
    FUZZY SETS AND SYSTEMS, 2011, 166 (01) : 90 - 100
  • [25] Modifications: Lattice-valued structures
    Losert, B.
    Boustique, H.
    Richardson, G.
    FUZZY SETS AND SYSTEMS, 2013, 210 : 54 - 62
  • [26] A lattice-valued set theory
    Titani, S
    ARCHIVE FOR MATHEMATICAL LOGIC, 1999, 38 (06) : 395 - 421
  • [27] A lattice-valued set theory
    Satoko Titani
    Archive for Mathematical Logic, 1999, 38 : 395 - 421
  • [28] Lattice-valued coarse structures
    Wang, Yongchao
    Pang, Bin
    Shi, Fu-Gui
    FUZZY SETS AND SYSTEMS, 2025, 499
  • [29] Lattice-valued fuzzy frames
    El-Saady, Kamal
    INFORMATION SCIENCES, 2007, 177 (21) : 4810 - 4819
  • [30] On an algebra of lattice-valued logic
    Hansen, L
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (01) : 282 - 318