On logarithmic Sobolev inequalities for higher order fractional derivatives

被引:28
|
作者
Cotsiolis, A [1 ]
Tavoularis, NK [1 ]
机构
[1] Univ Patras, Dept Math, GR-26110 Patras, Greece
关键词
D O I
10.1016/j.crma.2004.11.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On R, we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function f epsilon H-s(R-n) satisfies [GRAPHICS] with alpha > 0 be any number and where the operators (-Delta)(s/2) in Fourier spaces are defined by (-Delta)sl2f(k) := (2pi\k\)(s)(f) over cap (k). To cite this article: A. Cotsiolis, NX Tavoularis, C R. Acad. Sci. Paris, Ser. 1340 (2005). (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 50 条
  • [21] Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces
    Aida, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 174 (02) : 430 - 477
  • [22] Higher-order Sobolev embeddings and isoperimetric inequalities
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ADVANCES IN MATHEMATICS, 2015, 273 : 568 - 650
  • [23] Higher order Sobolev trace inequalities on balls revisited
    Quoc Anh Ngo
    Van Hoang Nguyen
    Quoc Hung Phan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (07)
  • [24] Higher-order Lp isoperimetric and Sobolev inequalities
    Haddad, Julian
    Langharst, Dylan
    Putterman, Eli
    Roysdon, Michael
    Ye, Deping
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [25] The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow
    Ye, Rugang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2015, 3 (01) : 1 - 36
  • [26] Logarithmic Sobolev inequalities: Conditions and counterexamples
    Wang, FY
    JOURNAL OF OPERATOR THEORY, 2001, 46 (01) : 183 - 197
  • [27] Logarithmic Sobolev Inequalities for Information Measures
    Kitsos, Christos P.
    Tavoularis, Nikolaos K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2554 - 2561
  • [28] Logarithmic Sobolev inequalities on path spaces
    Hsu, EP
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 168 - 181
  • [29] Logarithmic Sobolev inequalities and spectral gaps
    Carlen, E
    Loss, M
    RECENT ADVANCES IN THE THEORY AND APPLICATIONS OF MASS TRANSPORT, 2004, 353 : 53 - 60
  • [30] Modified logarithmic Sobolev inequalities on R
    Barthe, F.
    Roberto, C.
    POTENTIAL ANALYSIS, 2008, 29 (02) : 167 - 193