Differentiation of multivariable composite functions and Bell polynomials

被引:28
|
作者
Noschese, S [1 ]
Ricci, PE [1 ]
机构
[1] Univ Roma La Sapienza, Dipartmento Matemat Guido CASTELNUOVO, Rome, Italy
关键词
Bell polynomials; multivariable composite functions; implicit functions; Cauchy problem for ordinary differential equations;
D O I
10.1023/A:1023227705558
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We generalize the Bell polynomials in order to derive an operational tool for the differentiation of composite functions in several variables. In particular we show a formula that relates the Bell polynomials for multivariable composite functions to the classical ones. Some applications are suggested.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [21] Bell polynomials and modified Bessel functions of half-integral order
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 270 - 274
  • [22] Complete and incomplete Bell polynomials associated with Lah–Bell numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Han-Young Kim
    Advances in Difference Equations, 2021
  • [23] Congruences on the Bell polynomials and the derangement polynomials
    Sun, Yidong
    Wu, Xiaojuan
    Zhuang, Jujuan
    JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1564 - 1571
  • [24] INTEGRALS INVOLVING GENERALIZED HERMITE-POLYNOMIALS AND MULTIVARIABLE H-FUNCTIONS
    GUERAN, A
    REVUE ROUMAINE DE PHYSIQUE, 1985, 30 (06): : 461 - 465
  • [25] A CLASS OF MULTIVARIABLE POLYNOMIALS ASSOCIATED WITH HUMBERT POLYNOMIALS
    Aktas, Rabia
    Altin, Abdullah
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 359 - 372
  • [26] SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE ERKUS-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS
    Gaboury, S.
    Tremblay, R.
    Ozarslan, M. A.
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (04): : 341 - 356
  • [27] On Generalized Bell Polynomials
    Corcino, Roberto B.
    Corcino, Cristina B.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [28] Multivariate Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (11) : 2607 - 2611
  • [29] Generalized Bell polynomials
    Duran, Antonio J.
    JOURNAL OF APPROXIMATION THEORY, 2025, 306
  • [30] The Bell differential polynomials
    Schimming, R
    Rida, SZ
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, 1998, : 353 - 367