Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data

被引:86
|
作者
Zhao, Bin [1 ]
Fan, Kai [1 ]
Yang, Kan [2 ]
Wang, Zilong [1 ]
Li, Hui [1 ]
Yang, Yintang [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Univ Memphis, Dept Comp Sci, Memphis, TN 38152 USA
[3] Xidian Univ, Key Lab, Minist Educ Wide BandGap Semicond Mat & Devices, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential privacy; federated learning; industrial big data; privacy preservation; proxy server; shared parameters; ASSOCIATION;
D O I
10.1109/TII.2021.3052183
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many artificial intelligence technologies have been applied for extracting useful information from massive industrial big data. However, the privacy issues are usually overlooked in many existing methods. In this article, we propose an anonymous and privacy-preserving federated learning scheme for the mining of industrial big data. We explored the effect of the proportion of shared parameters on the accuracy through experiments, and found that sharing partial parameters can almost achieve the accuracy of sharing all the parameters. On this basis, our proposed federated learning scheme reduces the privacy leakage by sharing fewer parameters between the server and each participant. Specifically, we leverage differential privacy on shared parameters with Gaussian mechanism to provide strict privacy preservation; the effect of different epsilon and delta on accuracy is tested; and we keep track of delta-when it reaches a certain threshold, training shall be stopped. What's more, we employ a proxy server as the middle layer between the server and all the participants to achieve anonymity of participants; it is worth noting that this can also reduce the communication burden on the federated learning server. Finally, we provide the security analysis and performance evaluations by comparing with other schemes.
引用
下载
收藏
页码:6314 / 6323
页数:10
相关论文
共 50 条
  • [31] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [32] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [33] A Syntactic Approach for Privacy-Preserving Federated Learning
    Choudhury, Olivia
    Gkoulalas-Divanis, Aris
    Salonidis, Theodoros
    Sylla, Issa
    Park, Yoonyoung
    Hsu, Grace
    Das, Amar
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1762 - 1769
  • [34] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-Hau
    Yu, Yi-An
    Su, Hsuan-Cheng
    Journal of Information Science and Engineering, 2024, 40 (06) : 1173 - 1196
  • [35] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [36] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [37] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [38] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615
  • [39] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [40] Privacy-preserving Decentralized Federated Deep Learning
    Zhu, Xudong
    Li, Hui
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 33 - 38