'Omics' analyses of regulatory networks in plant abiotic stress responses

被引:328
|
作者
Urano, Kaoru [1 ]
Kurihara, Yukio [2 ]
Seki, Motoaki [2 ]
Shinozaki, Kazuo [1 ]
机构
[1] RIKEN Plant Sci Ctr, Gene Discovery Res Team, Tsukuba, Ibaraki 3050074, Japan
[2] RIKEN Plant Sci Ctr, Plant Genom Network Res Team, Tsurumi Ku, Kanagawa 2300045, Japan
关键词
MESSENGER-RNA MATURATION; ARABIDOPSIS-THALIANA; POSTEMBRYONIC DEVELOPMENT; ANTISENSE TRANSCRIPTS; DECAPPING COMPLEX; GENE-EXPRESSION; SALINITY STRESS; ABSCISIC-ACID; HEAT-STRESS; HISTONE H3;
D O I
10.1016/j.pbi.2009.12.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants must respond and adapt to abiotic stresses to survive in various environmental conditions. Plants have acquired various stress tolerance mechanisms, which are different processes involving physiological and biochemical changes that result in adaptive or morphological changes. Recent advances in genome-wide analyses have revealed complex regulatory networks that control global gene expression, protein modification, and metabolite composition. Genetic regulation and epigenetic regulation, including changes in nucleosome distribution, histone modification, DNA methylation, and npcRNAs (non-protein-coding RNA) play important roles in abiotic stress gene networks. Transcriptomics, metabolomics, bioinformatics, and high-through-put DNA sequencing have enabled active analyses of regulatory networks that control abiotic stress responses. Such analyses have markedly increased our understanding of global plant systems in responses and adaptation to stress conditions.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 50 条
  • [41] SUMO, a heavyweight player in plant abiotic stress responses
    Pedro Humberto Castro
    Rui Manuel Tavares
    Eduardo R. Bejarano
    Herlânder Azevedo
    Cellular and Molecular Life Sciences, 2012, 69 : 3269 - 3283
  • [42] The roles of endomembrane trafficking in plant abiotic stress responses
    Xiangfeng Wang
    Min Xu
    Caiji Gao
    Yonglun Zeng
    Yong Cui
    Wenjin Shen
    Liwen Jiang
    JournalofIntegrativePlantBiology, 2020, 62 (01) : 55 - 69
  • [43] The roles of endomembrane trafficking in plant abiotic stress responses
    Wang, Xiangfeng
    Xu, Min
    Gao, Caiji
    Zeng, Yonglun
    Cui, Yong
    Shen, Wenjin
    Jiang, Liwen
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2020, 62 (01) : 55 - 69
  • [44] Gene expression profiling of plant responses to abiotic stress
    Samuel P. Hazen
    Yajun Wu
    Joel A. Kreps
    Functional & Integrative Genomics, 2003, 3 (3) : 105 - 111
  • [45] Plant responses to abiotic stress regulated by histone acetylation
    Wang, Fei
    Li, Chong-Hua
    Liu, Ying
    He, Ling-Feng
    Li, Ping
    Guo, Jun-Xin
    Zhang, Na
    Zhao, Bing
    Guo, Yang-Dong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [46] Chromatin modifications and remodeling in plant abiotic stress responses
    Luo, Ming
    Liu, Xuncheng
    Singh, Prashant
    Cui, Yuhai
    Zimmerli, Laurent
    Wu, Keqiang
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 129 - 136
  • [47] The role of gibberellin signalling in plant responses to abiotic stress
    Colebrook, Ellen H.
    Thomas, Stephen G.
    Phillips, Andrew L.
    Hedden, Peter
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2014, 217 (01): : 67 - 75
  • [48] Involvement of Histone Modifcations in Plant Abiotic Stress Responses
    Lianyu Yuan
    Xuncheng Liu
    Ming Luo
    Songguang Yang
    Keqiang Wu
    Journal of Integrative Plant Biology, 2013, 55 (10) : 892 - 901
  • [49] Understanding molecular alphabets of the plant abiotic stress responses
    Grover, A
    Kapoor, A
    Lakshmi, OS
    Agarwal, S
    Sahi, C
    Katiyar-Agarwal, S
    Agarwal, M
    Dubey, H
    CURRENT SCIENCE, 2001, 80 (02): : 206 - 216
  • [50] Regulation of biotic and abiotic stress responses by plant hormones
    Kumar, Prakash P.
    PLANT CELL REPORTS, 2013, 32 (07) : 943 - 943