Computational study of scalar mixing in the field of a gaseous laminar line vortex

被引:7
|
作者
Basu, S. [1 ]
Barber, T. J. [1 ]
Cetegen, B. M. [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
关键词
D O I
10.1063/1.2732454
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A computational study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams (one seeded and another unseeded) flowing parallel to each other in a rectangular flow channel. An isolated line vortex is initiated by momentarily increasing one of the stream velocities in relation to the other in otherwise equal velocity, co-flowing streams separated upstream by a splitter plate. A detailed parametric study was conducted to determine the effects of vortex strength, convection time, and nonuniform temperature on scalar mixing characteristics. A qualitative relationship was developed between the vortex and the convection Reynolds numbers to obtain a well-defined vortical structure. As it is well-known in the literature on mixing layers, the vortex initiation process creates an abundance of the fluid in the vortex core from the pulsed (or high speed) stream. Spatial mixing statistics are obtained in the vortex interaction domain by determining the scalar concentration probability density functions as well as the mean mixed fluid concentration and its variance. Computational results are found to be in excellent agreement with the experiments conducted in the same configuration by one of the authors. Both computations and experiments suggest that the interfacial area generation as a result of vortex interaction is primarily responsible for mixing augmentation at high vortex Reynolds numbers (Re-v >= 140). Effects of molecular diffusion become more important for weak vortices and at short convection times. Temperature (or density) ratio between co-flowing streams clearly affects the rate of growth of the vortices and this is consistent with the findings in nonuniform density mixing layers. Nonuniform temperatures result in a decrease of the mean mixed fluid concentration regardless of the stream from which the vortex is generated. The mean mixed fluid concentration in the vortex interaction region scales with the product of vortex Reynolds number and nondimensional convective time scale (or degree of stirring) and inversely with temperature ratio. Empirical correlations were developed for this parameter for vortices generated from either stream. (c) 2007 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Homogenization and mixing measures for a replenishing passive scalar field
    Keating, Shane R.
    Kramer, Peter R.
    Smith, K. Shafer
    PHYSICS OF FLUIDS, 2010, 22 (07) : 1 - 9
  • [22] Computational study of organic solvent-CO2 mixing in convective supercritical environment under laminar conditions: Impact of enthalpy of mixing
    Sierra-Pallares, Jose
    Raghavan, Ashwin
    Ghoniem, Ahmed F.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 109 : 109 - 123
  • [23] Vacuum polarization energy of a complex scalar field in a vortex background
    Graham, N.
    Weigel, H.
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [24] ON THE VORTEX SOLUTIONS OF SOME NONLINEAR SCALAR FIELD-EQUATIONS
    WEINSTEIN, MI
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (02) : 821 - 827
  • [25] Line and surface defects for the free scalar field
    Edoardo Lauria
    Pedro Liendo
    Balt C. van Rees
    Xiang Zhao
    Journal of High Energy Physics, 2021
  • [26] Study of the flow field and scalar transport of indoor ventilating space under the impact of Coanda vortex
    Ho, Je-Ee
    Young, Hong-Tsu
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2007, 15 (02): : 82 - 88
  • [27] Study of the flow field and scalar transport of indoor ventilating space under the impact of coanda vortex
    Department of Mechanical Engineering, National Ilan University, Ilan, Taiwan
    不详
    J. Mar. Sci. Technol., 2007, 2 (82-88):
  • [28] Line and surface defects for the free scalar field
    Lauria, Edoardo
    Liendo, Pedro
    van Rees, Balt C.
    Zhao, Xiang
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [29] Experimental study on laminar mixing in planetary mixer
    T. Yamagata
    H. Sugisawa
    N. Fujisawa
    Experiments in Fluids, 2021, 62
  • [30] Experimental study on laminar mixing in planetary mixer
    Yamagata, T.
    Sugisawa, H.
    Fujisawa, N.
    EXPERIMENTS IN FLUIDS, 2021, 62 (02)