Kernel-based local order estimation of nonlinear nonparametric systems

被引:24
|
作者
Zhao, Wenxiao [1 ]
Chen, Han-Fu [1 ]
Bai, Er-wei [2 ]
Li, Kang [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[3] Queens Univ, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North Ireland
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Nonlinear ARX system; Recursive local linear estimator; Order estimation; Strong consistency; MODEL ORDER; IDENTIFICATION; SELECTION; OPTIMIZATION;
D O I
10.1016/j.automatica.2014.10.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the local order estimation of nonlinear autoregressive systems with exogenous inputs (NARX), which may have different local dimensions at different points. By minimizing the kernel-based local information criterion introduced in this paper, the strongly consistent estimates for the local orders of the NARX system at points of interest are obtained. The modification of the criterion and a simple procedure of searching the minimum of the criterion, are also discussed. The theoretical results derived here are tested by simulation examples. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 50 条
  • [31] Kernel-Based Regularization for Unstable Systems
    Fujimoto, Yusuke
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 209 - 214
  • [32] Adaptive training of a kernel-based nonlinear discriminator
    Liu, BY
    PATTERN RECOGNITION, 2005, 38 (12) : 2419 - 2425
  • [33] Kernel-based nonlinear blind source separation
    Harmeling, S
    Ziehe, A
    Kawanabe, M
    Müller, KR
    NEURAL COMPUTATION, 2003, 15 (05) : 1089 - 1124
  • [34] Kernel-Based Identification of Positive Systems
    Khosravi, Mohammad
    Smith, Roy S.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1740 - 1745
  • [35] Modified kernel-based nonlinear feature extraction
    Dai, G
    Qian, YT
    Jia, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 721 - 724
  • [36] Kernel-based nonlinear independent component analysis
    Zhang, Kun
    Chan, Laiwan
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 301 - +
  • [37] The kernel-based nonlinear multivariate grey model
    Ma, Xin
    Liu, Zhi-bin
    APPLIED MATHEMATICAL MODELLING, 2018, 56 : 217 - 238
  • [38] Analyzing Local Structure in Kernel-Based Learning
    Montavon, Gregoire
    Braun, Mikio L.
    Krueger, Tammo
    Mueller, Klaus-Robert
    IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (04) : 62 - 74
  • [39] A Kernel-Based Approach for DBS Parameter Estimation
    Gomez-Orozco, V.
    Cuellar, J.
    Garcia, Hernan F.
    Alvarez, A.
    Alvarez, M.
    Orozco, A.
    Henao, O.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 158 - 166
  • [40] A new kernel-based approach for spectral estimation
    Zorzi, Mattia
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 534 - 539