On the exponential decay for viscoelastic mixtures

被引:0
|
作者
Passarella, F. [1 ]
Zampoli, V. [1 ]
机构
[1] Univ Salerno, Dept Informat Engn & Appl Math, I-84084 Fisciano, SA, Italy
来源
ARCHIVES OF MECHANICS | 2007年 / 59卷 / 02期
关键词
mixtures; viscoelastic materials; spatial behaviour; positive definite energy;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
THIS PAPER concerns the study of mixtures composed of a thermoelastic solid and a viscous fluid. For these mixtures, the dissipation effects are connected with the viscosity rate of one constituent and with the relative velocity vector. Using the time-weighted surface power method, associated with the linear process, we obtain some spatial decay estimates, characterized by time-independent and time-dependent decay rates, respectively. The first type of estimate is appropriate for large values of time, while the other is useful for short values of the same variable.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [31] HEAT-VISCOELASTIC PLATE INTERACTION: ANALYTICITY, SPECTRAL ANALYSIS, EXPONENTIAL DECAY
    Triggiani, Roberto
    Zhang, Jing
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (01): : 153 - 182
  • [32] Global existence, uniform decay, and exponential growth of solutions for a system of viscoelastic Petrovsky equations
    Tahamtani, Faramarz
    Peyravi, Amir
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (01) : 87 - 109
  • [33] EXPONENTIAL DECAY OF THE VISCOELASTIC EULER-BERNOULLI EQUATION WITH A NONLOCAL DISSIPATION IN GENERAL DOMAINS
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Ma, T. F.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (5-6) : 495 - 510
  • [34] EXPONENTIAL DECAY
    TEMPELAARS, S
    SCHERPENISSE, J
    INTERFACE-JOURNAL OF NEW MUSIC RESEARCH, 1976, 5 (04): : 207 - 223
  • [35] Exponential energy decay of solutions for a system of viscoelastic wave equations of Kirchhoff type with strong damping
    Li, Gang
    Hong, Linghui
    Liu, Wenjun
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1046 - 1062
  • [36] Exponential decay of solutions for a viscoelastic coupled Lame system with logarithmic source and distributed delay terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4858 - 4880
  • [37] Exponential decay of solutions to an inertial model for a wave equation with viscoelastic damping and time varying delay
    Berbiche, Mohamed
    QUAESTIONES MATHEMATICAE, 2024, 47 (06) : 1271 - 1303
  • [38] General Energy Decay and Exponential Instability to a Nonlinear Dissipative-Dispersive Viscoelastic Petrovsky Equation
    Peyravi, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (05)
  • [39] THE ANALYTICITY AND EXPONENTIAL DECAY OF A STOKES-WAVE COUPLING SYSTEM WITH VISCOELASTIC DAMPING IN THE VARIATIONAL FRAMEWORK
    Zhang, Jing
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (01): : 135 - 154
  • [40] Domination with exponential decay
    Dankelmann, Peter
    Day, David
    Erwin, David
    Mukwembi, Simon
    Swart, Henda
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5877 - 5883