On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity

被引:11
|
作者
Nussenzveig Lopes, Helena J. [1 ]
Seis, Christian [2 ]
Wiedemann, Emil [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, Brazil
[2] Westfalische Wilhelms Univ Munster, Inst Anal & Numerik, Munster, Germany
[3] Univ Ulm, Inst Angew Anal, Ulm, Germany
关键词
2D incompressible Euler equations; inviscid limit; unbounded vorticity; renormalisation; INVISCID LIMIT; RENORMALIZED SOLUTIONS; LAGRANGIAN SOLUTIONS; EULER EQUATIONS; CONTINUITY;
D O I
10.1088/1361-6544/abe51f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier-Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in L ( p ) for some p > 1. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case p = infinity. Our proof, which relies on the classical renormalisation theory of DiPerna-Lions, is surprisingly simple.
引用
收藏
页码:3112 / 3121
页数:10
相关论文
共 50 条
  • [1] Vanishing viscosity limit for an incompressible fluid with concentrated vorticity
    Marchioro, Carlo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
  • [2] Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity
    Hounie, J
    Lopes, MC
    Lopes, HJN
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) : 134 - 153
  • [3] Boundary vorticity of incompressible 2D flows
    Franzina, Giovanni
    [J]. Zeitschrift fur Angewandte Mathematik und Physik, 2024, 75 (06):
  • [4] Vortex dynamics for 2D Euler flows with unbounded vorticity
    Ceci, Stefano
    Seis, Christian
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1969 - 1990
  • [5] 2D VELOCITY-VORTICITY VISCOUS INCOMPRESSIBLE FLOWS
    Tellez, Raul
    Acevedo, Habersheel
    Nicolas, Alfredo
    [J]. COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, : 1033 - 1044
  • [6] On maximum enstrophy dissipation in 2D Navier-Stokes flows in the limit of vanishing viscosity
    Matharu, Pritpal
    Protas, Bartosz
    Yoneda, Tsuyoshi
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 441
  • [7] Incompressible Flows of an Ideal Fluid¶with Unbounded Vorticity
    Misha Vishik
    [J]. Communications in Mathematical Physics, 2000, 213 : 697 - 731
  • [8] Incompressible flows of an ideal fluid with unbounded vorticity
    Vishik, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (03) : 697 - 731
  • [9] On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
    Clopeau, T
    Mikelic, A
    Robert, R
    [J]. NONLINEARITY, 1998, 11 (06) : 1625 - 1636
  • [10] Vanishing viscosity limit for a smoke ring with concentrated vorticity
    Enrico Brunelli
    Carlo Marchioro
    [J]. Journal of Mathematical Fluid Mechanics, 2011, 13 : 421 - 428