Design and structure optimization of small-scale radial inflow turbine for organic Rankine cycle system

被引:20
|
作者
Wu, Tan [1 ,2 ]
Shao, Long [3 ]
Wei, Xinli [1 ,2 ]
Ma, Xinling [1 ,2 ]
Zhang, Guojie [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Henan, Peoples R China
[2] MOE, Engn Res Ctr Energy Saving Technol & Equipments T, Zhengzhou 450001, Henan, Peoples R China
[3] Henan Agr Univ, Coll Mech & Elect Engn, Zhengzhou 450002, Henan, Peoples R China
关键词
Waste heat recovery; Organic Rankine cycle; Radial inflow turbine; Turbine design and optimization; WASTE HEAT-RECOVERY; PERFORMANCE ANALYSIS; WORKING FLUID; ORC SYSTEM; EXPANDER; IMPACT; SIMULATION; PREDICTION; SELECTIONS; DRIVEN;
D O I
10.1016/j.enconman.2019.111940
中图分类号
O414.1 [热力学];
学科分类号
摘要
The ORC (organic Rankine cycle) system has the advantages of simple structure, environmental friendliness, reliability and low capital cost. The expander is the key device of energy conversion in the ORC system, and its performance has a direct influence on that of the ORC. In this paper, a self-designed and manufactured radial inflow turbine is applied to low temperature waste heat power generation. The numerical model for the internal flow of the radial inflow turbine is established, and the numerical results show a better agreement with the experimental data. Firstly, the influence of blade stagger angles on nozzle performance is studied. The study finds that with the decrement of stagger angles under specific angle ranges, the velocity coefficient increases. However, the efficiency of the nozzle decreases sharply when the stagger angle exceeds 30. Secondly, the influence of the blade profile on the efficiency of the rotor is investigated. The results indicate that with t increasing, the efficiency of the rotor firstly increases, then decreases quickly. It increases by 1% compared with that of the original rotor, when the t = 1.95. At last, the performance of the turbine is researched numerically. This paper discovers that total-to-static efficiency of the turbine increases by 1.7% compared with that of the original turbine. This research provides orientation and basis for the improvement of aerodynamic design and performance of radial inflow turbine. As for practical application, the study can provide certain reference for the structure and blade profile design of nozzles and rotors to further improve the performance, and to offer some data for the operational control and tests.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Design of Small-scale Radial Inflow Turbine Integrated into Organic Rankine Cycle
    Wang, Hui
    Ma, Xinling
    Wei, Xinli
    NATURAL RESOURCES AND SUSTAINABLE DEVELOPMENT II, PTS 1-4, 2012, 524-527 : 3907 - 3913
  • [2] Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine
    Rahbar, Kiyarash
    Mahmoud, Saad
    Al-Dadah, Raya K.
    Moazami, Nima
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 186 - 198
  • [3] Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle
    Rahbar, Kiyarash
    Mahmoud, Saad
    Al-Dadah, Raya K.
    Moazami, Nima
    ENERGY, 2015, 83 : 696 - 711
  • [4] Design and manufacturing a small-scale radial-inflow turbine for clean organic Rankine power system
    Al Jubori, Ayad M.
    Al-Mousawi, Fadhel N.
    Rahbar, Kiyarash
    Al-Dadah, Raya
    Mahmoud, Saad
    JOURNAL OF CLEANER PRODUCTION, 2020, 257
  • [5] Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm
    Al Jubori, Ayad M.
    Al-Dadah, Raya
    Mahmoud, Saad
    ENERGY, 2017, 131 : 297 - 311
  • [6] Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design
    Li, Yan
    Ren, Xiao-dong
    APPLIED THERMAL ENGINEERING, 2016, 96 : 547 - 554
  • [7] Design and performance experiment of radial inflow turbine expander for organic Rankine cycle system
    Gou, Yanan
    Li, Lei
    Min, Hong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2021, 16 (04) : 1202 - 1209
  • [8] Impact analysis and optimization of the preliminary design parameters for an organic Rankine cycle radial inflow turbine
    Chao Zhang
    Yongwang Li
    Zhiting Tong
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [9] Impact analysis and optimization of the preliminary design parameters for an organic Rankine cycle radial inflow turbine
    Zhang, Chao
    Li, Yongwang
    Tong, Zhiting
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)
  • [10] Development of micro-scale radial inflow turbine for Organic Rankine Cycle
    Al Jubori, Ayad
    Al-Dadah, Raya K.
    Mahmoud, Saad
    2016 INTERNATIONAL CONFERENCE FOR STUDENTS ON APPLIED ENGINEERING (ICSAE), 2016, : 164 - 169