Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle

被引:91
|
作者
Rahbar, Kiyarash [1 ]
Mahmoud, Saad [1 ]
Al-Dadah, Raya K. [1 ]
Moazami, Nima [1 ]
机构
[1] Univ Birmingham, Sch Mech Engn, Birmingham B15 2TT, W Midlands, England
关键词
Organic Rankine Cycle; Radial turbine; Mean-line modelling; Genetic algorithm optimization; Organic working fluids; WASTE HEAT-RECOVERY; MICRO-CHP SYSTEMS; THERMODYNAMIC ANALYSIS; FLUID SELECTION; SCROLL EXPANDER; WORKING FLUIDS; SOLAR-ENERGY; ORC; POWER; DESIGN;
D O I
10.1016/j.energy.2015.02.079
中图分类号
O414.1 [热力学];
学科分类号
摘要
Organic Rankine Cycle converts low grade heat sources into power utilizing organic fluids with low boiling temperature and pressure. In this cycle the design and performance of the expander has a significant impact on the cycle's overall efficiency. This work presents an integrated mathematical approach for the development of an efficient and compact small-scale radial turbine. This mathematical approach integrates the mean-line modelling with real gas formulation and GA(genetic algorithm) optimisation technique. In this methodology, the mean-line modelling coupled with real gas formulation is employed to perform parametric studies to identify the key variables that have significant effect on the turbine efficiency. Such variables are then used in the GA to optimise the turbine performance. Eight organic fluids are investigated to optimise the performance of the small-scale radial turbine in terms of efficiency. Results showed that the achieved radial turbine efficiencies vary from 82.9% to 84%; which is higher than the reported efficiency values of other types of expanders. R152a showed the highest efficiency of 84% with seven degrees (K) of superheating. However, if the superheating is to be avoided, isobutane exhibited the most favourable characteristics in terms of efficiency (83.82%), rotor size (66.3 mm) and inlet temperature (89.2 degrees C). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:696 / 711
页数:16
相关论文
共 50 条
  • [1] Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine
    Rahbar, Kiyarash
    Mahmoud, Saad
    Al-Dadah, Raya K.
    Moazami, Nima
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 186 - 198
  • [2] Design and structure optimization of small-scale radial inflow turbine for organic Rankine cycle system
    Wu, Tan
    Shao, Long
    Wei, Xinli
    Ma, Xinling
    Zhang, Guojie
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [3] Design of Small-scale Radial Inflow Turbine Integrated into Organic Rankine Cycle
    Wang, Hui
    Ma, Xinling
    Wei, Xinli
    NATURAL RESOURCES AND SUSTAINABLE DEVELOPMENT II, PTS 1-4, 2012, 524-527 : 3907 - 3913
  • [4] Energy analysis and optimization of a small-scale axial flow turbine for Organic Rankine Cycle application
    Engineer, Yohan
    Rezk, Ahmed
    Hossain, Abul Kalam
    International Journal of Thermofluids, 2021, 12
  • [5] Modelling and parametric analysis of small-scale axial and radial outflow turbines for Organic Rankine Cycle applications
    Al Jubori, Ayad M.
    Al-Dadah, Raya K.
    Mahmoud, Saad
    Daabo, Ahmed
    APPLIED ENERGY, 2017, 190 : 981 - 996
  • [6] Off-Design Analysis of a Small-Scale Axial Turbine in Organic Rankine Cycle
    Lou, Zeyu
    He, Weifeng
    Yao, Zhaohui
    Wang, Chen
    Su, Pengfei
    Han, Dong
    SUSTAINABILITY, 2025, 17 (04)
  • [7] Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm
    Al Jubori, Ayad M.
    Al-Dadah, Raya
    Mahmoud, Saad
    ENERGY, 2017, 131 : 297 - 311
  • [8] Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
    Pasquale, David
    Ghidoni, Antonio
    Rebay, Stefano
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (04):
  • [9] A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle
    Wang, Enhua
    Peng, Ningjian
    ENERGIES, 2023, 16 (08)
  • [10] Experimental investigation and machine learning optimization of a small-scale organic Rankine cycle
    Feng, Yong-qiang
    Xu, Kang-jing
    Zhang, Qiang
    Hung, Tzu-Chen
    He, Zhi-xia
    Xi, Huan
    Rasheed, Nabeel
    APPLIED THERMAL ENGINEERING, 2023, 224