Superadditivity of convex integral transform for positive operators in Hilbert spaces

被引:0
|
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne, Vic 8001, Australia
[2] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci, Sch Comp Sci & Appl Math, Johannesburg, South Africa
关键词
Operator monotone functions; Operator convex functions; Operator inequalities; Lowner-Heinz inequality; Logarithmic operator inequalities; MONOTONE-FUNCTIONS;
D O I
10.1007/s13398-021-01037-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a continuous and positive function w (lambda), lambda > 0 and mu a positive measure on (0, infinity) we consider the following convex integral transform C (w, mu) (T) := integral(infinity)(0) w (lambda) T-2 (lambda + T)(-1) d mu(lambda) where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other that, for all A, B > 0 with BA + AB >= 0, C( w, mu) (A + B) >= C(w, mu) ( A) + C(w, mu) ( B). In particular, we have for r is an element of (0, 1], the power inequality (A + B)(r+1) >= A(r+1) + Br+1 and the logarithmic inequality (A + B) ln (A + B) >= A ln A + B ln B. Some examples for operatormonotone and operator convex functions and integral transforms C (center dot, center dot) related to the exponential and logarithmic functions are also provided.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] AREA INTEGRAL FUNCTIONS AND H∞ FUNCTIONAL CALCULUS FOR SECTORIAL OPERATORS ON HILBERT SPACES
    Chen, Zeqian
    Sun, Mu
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 989 - 997
  • [42] AREA INTEGRAL FUNCTIONS AND H∞ FUNCTIONAL CALCULUS FOR SECTORIAL OPERATORS ON HILBERT SPACES
    陈泽乾
    孙牧
    Acta Mathematica Scientia, 2013, 33 (04) : 989 - 997
  • [43] Bounds of Different Integral Operators in Tensorial Hilbert and Variable Exponent Function Spaces
    Afzal, Waqar
    Abbas, Mujahid
    Alsalami, Omar Mutab
    MATHEMATICS, 2024, 12 (16)
  • [44] Hilbert–Schmidt Frames for Operators on Hilbert Spaces
    Farkhondeh Takhteh
    Morteza Mirzaee Azandaryani
    Iranian Journal of Science, 2023, 47 : 1679 - 1687
  • [45] On symmetrizable operators on Hilbert spaces
    Mokhtar-Kharroubi, Hocine
    Mokhtar-Kharroubi, Mustapha
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (01) : 1 - 24
  • [46] Definable Operators on Hilbert Spaces
    Goldbring, Isaac
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2012, 53 (02) : 193 - 201
  • [47] On differential operators in Hilbert spaces
    Friedrichs, K
    AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 : 523 - 544
  • [48] AMENABLE OPERATORS ON HILBERT SPACES
    Ji, You Qing
    Shi, Luo Yi
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1165 - 1183
  • [49] On Symmetrizable Operators on Hilbert Spaces
    Hocine Mokhtar-Kharroubi
    Mustapha Mokhtar-Kharroubi
    Acta Applicandae Mathematicae, 2008, 102 : 1 - 24
  • [50] μ-HANKEL OPERATORS ON HILBERT SPACES
    Mirotin, Adolf
    Kuzmenkova, Ekaterina
    OPUSCULA MATHEMATICA, 2021, 41 (06) : 881 - 898