The two-dimensional stochastic heat equation: renormalizing a multiplicative noise

被引:29
|
作者
Bertini, L
Cancrini, N
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
关键词
D O I
10.1088/0305-4470/31/2/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study, in two space dimensions,the heat equation with a random potential that is a white noise in space and time. We introduce a regularization of the noise and prove that, by a suitable renormalization of the coupling coefficient, the covariance has a non-trivial limit when the regularization is removed. The limit is described in terms of a two-body Schrodinger operator with singular interaction.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 50 条
  • [41] A note on the stabilizability of stochastic heat equations with multiplicative noise
    Barbu, V
    Lefter, C
    Tessitore, G
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) : 311 - 316
  • [42] REMARKS ON THE TWO-DIMENSIONAL STOCHASTIC NAVIER-STOKES EQUATION
    SCHMALFUSS, B
    MATHEMATISCHE NACHRICHTEN, 1987, 131 : 19 - 32
  • [43] Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation
    Honkonen, J
    PHYSICAL REVIEW E, 1998, 58 (04): : 4532 - 4540
  • [44] Anticipating stochastic equation of two-dimensional second grade fluids
    Shang, Shijie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1138 - 1152
  • [45] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [46] A remark on triviality for the two-dimensional stochastic nonlinear wave equation
    Oh, Tadahiro
    Okamoto, Mamoru
    Robert, Tristan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) : 5838 - 5864
  • [47] On the two-dimensional hyperbolic stochastic sine-Gordon equation
    Oh, Tadahiro
    Robert, Tristan
    Sosoe, Philippe
    Wang, Yuzhao
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (01): : 1 - 32
  • [48] On the two-dimensional hyperbolic stochastic sine-Gordon equation
    Tadahiro Oh
    Tristan Robert
    Philippe Sosoe
    Yuzhao Wang
    Stochastics and Partial Differential Equations: Analysis and Computations, 2021, 9 : 1 - 32
  • [49] CONSERVATIVE STOCHASTIC TWO-DIMENSIONAL CAHN-HILLIARD EQUATION
    Rockner, Michael
    Yang, Huanyu
    Zhu, Rongchan
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (03): : 1336 - 1375
  • [50] Analytic solutions of a two-dimensional rectangular heat equation with a heat source
    H. M. Srivastava
    K. Y. Kung
    K. -J. Wang
    Russian Journal of Mathematical Physics, 2008, 15 : 542 - 547