Diversity in a signal-to-image transformation approach for EEG-based motor imagery task classification

被引:15
|
作者
Yilmaz, Bahar Hatipoglu [1 ]
Yilmaz, Cagatay Murat [1 ]
Kose, Cemal [1 ]
机构
[1] Dept Comp Engn, Trabzon, Turkey
关键词
Angle-amplitude transformation; Angle-amplitude graph images; EEG; Motor imagery; Classification; COMMON SPATIAL-PATTERNS;
D O I
10.1007/s11517-019-02075-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nowadays, motor imagery-based brain-computer interfaces (BCIs) have been developed rapidly. In these systems, electroencephalogram (EEG) signals are recorded when a subject is involved in the imagination of doing any motor imagery movement like the imagination of the right/left hands, etc. In this paper, we sought to validate and enhance our previously proposed angle-amplitude transformation (AAT) technique, which is a simple signal-to-image transformation approach for the classification of EEG and MEG signals. For this purpose, we diversified our previous method and proposed four new angle-amplitude graph (AAG) representation methods for AAT transformation. These modifications were made on some points such as using different left/right side changing points at a different distance. To confirm the validity of the proposed methods, we performed experiments on the BCI Competition III Dataset IIIa, which is a benchmark dataset widely used for EEG-based multi-class motor imagery tasks. The procedure of proposed methods can be summarized in a concise manner as follows: (i) convert EEG signals to AAG images by using the proposed AAT transformation approaches; (ii) extract image features by employing Scale Invariant Feature Transform (SIFT)-based Bag of Visual Word (BoW); and (iii) classify features with k-Nearest Neighbor (k NN) algorithm. Experimental results showed that the changes in the baseline AAT approaches enhanced the classification performance on Dataset IIIa with an accuracy of 96.50% for two-class problem (left/right hand movement imaginations) and 97.99% for four-class problem (left/right hand, foot and tongue movement imaginations). These achievements are mainly due to the help of effective enhancements on AAG image representations. Graphical The flow diagram of the proposed methodology.
引用
下载
收藏
页码:443 / 459
页数:17
相关论文
共 50 条
  • [21] Motor imagery EEG signal classification with a multivariate time series approach
    I. Velasco
    A. Sipols
    C. Simon De Blas
    L. Pastor
    S. Bayona
    BioMedical Engineering OnLine, 22
  • [22] Classification of multiclass motor imagery EEG signal using sparsity approach
    Sreeja, S. R.
    Samanta, Debasis
    NEUROCOMPUTING, 2019, 368 : 133 - 145
  • [23] An Improved Support Vector Machine Classifier for EEG-Based Motor Imagery Classification
    Zhou, Hui
    Xu, Qi
    Wang, Yongji
    Huang, Jian
    Wu, Jun
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 267 - 275
  • [24] Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces
    Wu, Huanyu
    Li, Siyang
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 527 - 536
  • [25] Advancements in Temporal Fusion: A New Horizon for EEG-Based Motor Imagery Classification
    Kundu, Saran
    Tomar, Aman Singh
    Chowdhury, Anirban
    Thakur, Gargi
    Tomar, Aruna
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (02): : 567 - 576
  • [26] Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification
    Sartipi, Shadi
    Cetin, Mujdat
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 718 - 727
  • [27] Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Choi, Kup-Sze
    Zhou, Nan
    Zhang, Yuanpeng
    Chen, Badong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 521 - 533
  • [28] EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis
    Gu, Lingyun
    Yu, Zhenhua
    Ma, Tian
    Wang, Haixian
    Li, Zhanli
    Fan, Hui
    NEUROSCIENCE, 2020, 436 : 93 - 109
  • [29] Common Bayesian Network for Classification of EEG-Based Multiclass Motor Imagery BCI
    He, Lianghua
    Hu, Die
    Wan, Meng
    Wen, Ying
    von Deneen, Karen M.
    Zhou, MengChu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (06): : 843 - 854
  • [30] Subject adaptation convolutional neural network for EEG-based motor imagery classification
    Liu, Siwei
    Zhang, Jia
    Wang, Andong
    Wu, Hanrui
    Zhao, Qibin
    Long, Jinyi
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)