Trajectory Tracking Control For Underactuated Thrust-Propelled Aerial Vehicles

被引:4
|
作者
Warier, Rakesh R. [1 ]
Sanyal, Amit K. [1 ]
Dhullipalla, Mani H. [1 ]
Viswanathan, Sasi Prabhakaran [2 ]
机构
[1] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA
[2] Akrobotix LLC, Syracuse, NY USA
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 13期
关键词
Autonomous vehicles; Nonlinear control; POSITION TRACKING; MOTION ESTIMATION; ATTITUDE; STABILIZATION; SPACECRAFT;
D O I
10.1016/j.ifacol.2018.07.338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a trajectory tracking control scheme for a class of underactuated thrust propelled aerial vehicles. The class of aerial vehicles is modeled as a rigid body with a constant thrust direction in the body frame. The attitude of the rigid is fully actuated while only one translational degree of freedom is actuated. Thus, the combined translational and rotational motion is underactuated. The tracking control problem is solved in a two-step approach. First, a translational control scheme that tracks the desired position trajectory is constructed assuming the translational dynamics to be fully actuated. The magnitude of the translational control input is used as the magnitude of the control thrust. Second, the unit vector representing the direction of the translational control input is used as the desired thrust direction. An asymptotically stable attitude control scheme is developed in S-2, such that the body fixed thrust direction tracks the desired thrust direction. The overall closed-loop system is analytically shown to be asymptotically tracking the desired position trajectory. The results are validated by numerical simulations. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 560
页数:6
相关论文
共 50 条
  • [21] Second-Order Consensus of Networked Thrust-Propelled Vehicles on Directed Graphs
    Wang, Hanlei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 222 - 227
  • [22] Trajectory tracking of underactuated underwater vehicles
    Alonge, F
    D'Ippolito, F
    Raimondi, FM
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4421 - 4426
  • [23] Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles
    Heshmati-Alamdari, Shahab
    Nikou, Alexandros
    Dimarogonas, Dimos V.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 8311 - 8316
  • [24] Fast Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles
    Qiao, Lei
    Zhang, Weidong
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS (USYS), 2018,
  • [25] Trajectory tracking control for micro unmanned aerial vehicles
    Zhai Ruiyong
    Zhang Wendong
    Zhou Zhaoying
    Sang Shengbo
    Li Pengwei
    ADVANCES IN APPLIED SCIENCE AND INDUSTRIAL TECHNOLOGY, PTS 1 AND 2, 2013, 798-799 : 448 - +
  • [26] Trajectory Tracking of Underactuated VTOL Aerial Vehicles With Unknown System Parameters Via IRL
    Li, Shaobao
    Durdevic, Petar
    Yang, Zhenyu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3043 - 3050
  • [27] Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties
    Liao Yu-lei
    Zhang Ming-jun
    Wan Lei
    Li Ye
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2016, 23 (02) : 370 - 378
  • [28] Trajectory Tracking Control of Autonomous Underactuated Hovercraft Vehicles with Limited Torque
    Shojaei, Khoshnam
    2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 468 - 473
  • [29] Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties
    Yu-lei Liao
    Ming-jun Zhang
    Lei Wan
    Ye Li
    Journal of Central South University, 2016, 23 : 370 - 378
  • [30] ROBUST TRAJECTORY TRACKING CONTROL OF UNDERACTUATED SURFACE VEHICLES WITH PRESCRIBED PERFORMANCE
    Wang, Shasha
    Tuo, Yulong
    POLISH MARITIME RESEARCH, 2020, 27 (04) : 148 - 156