The quantum separability problem is a simultaneous hollowisation matrix analysis problem

被引:4
|
作者
Neven, A. [1 ]
Bastin, T. [1 ]
机构
[1] Univ Liege, Inst Phys Nucl Atom & Spect, CESAM, Bat B15, B-4000 Liege, Belgium
关键词
quantum entanglement; entanglement detection; separability problem; ENTANGLEMENT; STATES; CRITERION;
D O I
10.1088/1751-8121/aacb93
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the generalized concurrence approach to investigate the general multipartite separability problem. By extending the preconcurrence matrix formalism to arbitrary multipartite systems, we show that the separability problem can be formulated equivalently as a pure matrix analysis problem that consists in determining whether a given set of symmetric matrices is simultaneously unitarily congruent to hollow matrices, i.e. to matrices whose main diagonal is only composed of zeroes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An analytic approach to the problem of separability of quantum states based upon the theory of cones
    D. Salgado
    J. L. Sánchez-Gómez
    M. Ferrero
    Quantum Information Processing, 2011, 10 : 633 - 651
  • [22] An analytic approach to the problem of separability of quantum states based upon the theory of cones
    Salgado, D.
    Sanchez-Gomez, J. L.
    Ferrero, M.
    QUANTUM INFORMATION PROCESSING, 2011, 10 (05) : 633 - 651
  • [23] Exponential of a matrix, a nonlinear problem, and quantum gates
    Steeb, Willi-Hans
    Hardy, Yorick
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [24] A MATRIX DIAGONALIZATION PROBLEM IN QUANTUM-MECHANICS
    CONLON, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : 6281 - 6291
  • [25] ON THE PROBLEM OF SEPARABILITY FOR SUPERINTUITIONISTIC PROPOSITIONAL LOGICS
    KHOMICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1980, 254 (04): : 820 - 823
  • [26] On the problem polyhedral separability: A numerical solution
    A. S. Strekalovsky
    T. V. Gruzdeva
    A. V. Orlov
    Automation and Remote Control, 2015, 76 : 1803 - 1816
  • [27] On the problem polyhedral separability: A numerical solution
    Strekalovsky, A. S.
    Gruzdeva, T. V.
    Orlov, A. V.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (10) : 1803 - 1816
  • [28] On numerical solving the spherical separability problem
    M. Gaudioso
    T. V. Gruzdeva
    A. S. Strekalovsky
    Journal of Global Optimization, 2016, 66 : 21 - 34
  • [29] On numerical solving the spherical separability problem
    Gaudioso, M.
    Gruzdeva, T. V.
    Strekalovsky, A. S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (01) : 21 - 34
  • [30] COMPLETE SEPARABILITY OF THE STARK PROBLEM IN HYDROGEN
    GRAFFI, S
    GRECCHI, V
    SIMON, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07): : L193 - L197