Symbolic recurrence plots to analyze dynamical systems

被引:25
|
作者
Victoria Caballero-Pintado, M. [1 ]
Matilla-Garcia, Mariano [2 ]
Ruiz Marin, Manuel [3 ]
机构
[1] Univ Murcia, Dept Metodos Cuantitat Econ & Empresa, Campus Espinardo, E-30100 Murcia, Spain
[2] UNED, Dept Econ Aplicada & Estadist, Paseo Senda del Rey 11, Madrid 28040, Spain
[3] Univ Politecn Cartagena, Dept Metodos Cuantitat & Informat, Cartagena 30201, Spain
关键词
QUANTIFICATION ANALYSIS;
D O I
10.1063/1.5026743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, based on the concept of symbolic correlation integral, introduces a set of symbolic recurrence plots and associated invariant measures, which are independent of the distance parameter, serving as a tool for quantifying the dynamic structure. These new measures allow the study of transient behavior, coexistence of attractors, bifurcations, and structural change. The final user does not have to choose the free distance parameter. An empirical application to electrocardiography data illustrates the use of symbolic recurrence measures. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] RECURRENCE FOR RANDOM DYNAMICAL SYSTEMS
    Marie, Philippe
    Rousseau, Jerome
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01) : 1 - 16
  • [32] Recurrence plots 25 years later -Gaining confidence in dynamical transitions
    Marwan, Norbert
    Schinkel, Stefan
    Kurths, Juergen
    EPL, 2013, 101 (02)
  • [33] Embedding of topological dynamical systems into symbolic dynamical systems: A necessary and sufficient condition
    Wang, YG
    Wei, G
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (03) : 457 - 461
  • [34] Structural, dynamical and symbolic observability: From dynamical systems to networks
    Aguirre, Luis A.
    Portes, Leonardo L.
    Letellier, Christophe
    PLOS ONE, 2018, 13 (10):
  • [35] q-entropy for symbolic dynamical systems
    Zhao, Yun
    Pesin, Yakov
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (49)
  • [36] Symbolic integration of dynamical systems by collocation methods
    Meliopoulos, APS
    Cokkinides, GJ
    Stefopoulos, G
    2005 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS, 1-3, 2005, : 817 - 822
  • [37] Constructing dynamical systems with specified symbolic dynamics
    Hirata, Y
    Judd, K
    CHAOS, 2005, 15 (03)
  • [38] Multi-dimensional symbolic dynamical systems
    Schmidt, K
    CODES, SYSTEMS, AND GRAPHICAL MODELS, 2001, 123 : 67 - 82
  • [39] Learning Symbolic Representations of Hybrid Dynamical Systems
    Ly, Daniel L.
    Lipson, Hod
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 3585 - 3618
  • [40] Knot invariants from symbolic dynamical systems
    Silver, DS
    Williams, SG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) : 3243 - 3265