A derivative-free optimization algorithm based on conditional moments

被引:1
|
作者
Wang, Xiaogang [1 ]
Liang, Dong [1 ]
Feng, Xingdong [1 ]
Ye, Lu [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
optimization; derivative-free; conditional moment; trust region;
D O I
10.1016/j.jmaa.2006.08.091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a derivative-free optimization algorithm based on conditional moments for finding the maximizer of an objective function. The proposed algorithm does not require calculation or approximation of any order derivative of the objective function. The step size in iteration is determined adaptively according to the local geometrical feature of the objective function and a pre-specified quantity representing the desired precision. The theoretical properties including convergence of the method are presented. Numerical experiments comparing with the Newton, Quasi-Newton and trust region methods are given to illustrate the effectiveness of the algorithm. (c) 2006 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1337 / 1360
页数:24
相关论文
共 50 条
  • [41] An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints
    G. Cocchi
    G. Liuzzi
    A. Papini
    M. Sciandrone
    Computational Optimization and Applications, 2018, 69 : 267 - 296
  • [42] Derivative-free superiorization: principle and algorithm
    Yair Censor
    Edgar Garduño
    Elias S. Helou
    Gabor T. Herman
    Numerical Algorithms, 2021, 88 : 227 - 248
  • [43] Finite element model updating through derivative-free optimization algorithm
    Li, Dan
    Zhang, Jian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [44] Lipschitz-inspired HALRECT algorithm for derivative-free global optimization
    Stripinis, Linas
    Paulavicius, Remigijus
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (01) : 139 - 169
  • [45] An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints
    Cocchi, G.
    Liuzzi, G.
    Papini, A.
    Sciandrone, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (02) : 267 - 296
  • [46] Derivative-Free Optimization via Classification
    Yu, Yang
    Qian, Hong
    Hu, Yi-Qi
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2286 - 2292
  • [47] Derivative-free Methods for Structural Optimization
    Ilunga, Guilherme
    Leitao, Antonio
    ECAADE 2018: COMPUTING FOR A BETTER TOMORROW, VO 1, 2018, : 179 - 186
  • [48] BENCHMARKING DERIVATIVE-FREE OPTIMIZATION ALGORITHMS
    More, Jorge J.
    Wild, Stefan M.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 172 - 191
  • [49] Openly Revisiting Derivative-Free Optimization
    Rapin, Jeremy
    Dorval, Pauline
    Pondard, Jules
    Vasilache, Nicolas
    Cauwet, Marie-Liesse
    Couprie, Camille
    Teytaud, Olivier
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 267 - 268
  • [50] VXQR: derivative-free unconstrained optimization based on QR factorizations
    Arnold Neumaier
    Hannes Fendl
    Harald Schilly
    Thomas Leitner
    Soft Computing, 2011, 15 : 2287 - 2298