Nucleation-controlled hysteresis in unstrained hydrothermal VO2 particles

被引:16
|
作者
Clarke, Heidi [1 ]
Carraway, Bill D. [1 ]
Sellers, Diane G. [2 ]
Braham, Erick J. [2 ]
Banerjee, Sarbajit [2 ]
Arroyave, Raymundo [1 ]
Shamberger, Patrick J. [1 ]
机构
[1] 3003 Texas A&M Univ, Dept Mat Sci, College Stn, TX 77843 USA
[2] 3255 Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
来源
PHYSICAL REVIEW MATERIALS | 2018年 / 2卷 / 10期
关键词
METAL-INSULATOR-TRANSITION; VANADIUM DIOXIDE; PHASE-TRANSITION; MARTENSITIC NUCLEATION; TEMPERATURE; NANOPARTICLES; SEMICONDUCTOR; ORGANIZATION; NANOWIRES; DOMAINS;
D O I
10.1103/PhysRevMaterials.2.103402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While nucleation-limited transformation mechanisms are widely implicated in unstrained, undoped VO2 nanoparticles, a direct link between nucleation barriers and hysteresis widths has not yet been established. Here, we investigate microscopic transformation of structural domains optically in hydrothermally grown VO2 particles similar to.5-46 mu m in length, which are not elastically clamped to the substrate. We observe abrupt and generally complete transformation in individual particles, consistent with a nucleation-limited transformation mechanism. The forward and reverse transformation temperatures are not correlated, suggesting a range of potency of nucleation sites for both forward and reverse transformation in undoped particles, resulting in a hysteresis of 2.9-46.3 degrees C. Thus, the macroscopic hysteresis width in bulk VO2 powders and dispersed particulate films is primarily attributable to a distribution of critical nucleation temperatures between different particles. These findings suggest that as VO2 volume elements are scaled down for microelectronic applications, manipulation of nucleation sites via defect engineering may be required to control the degree of the VO2 element reversibility.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Growth Mechanism of VO2(B) Powders under Hydrothermal Conditions
    毕爱红
    朱金华
    文庆珍
    李志生
    湖南大学学报(自然科学版), 2010, (12) : 72 - 76
  • [42] Hexagonal VO2 particles: synthesis, mechanism and thermochromic properties
    Xu, Hui Yan
    Xu, Ke Wei
    Ma, Fei
    Chu, Paul K.
    RSC ADVANCES, 2018, 8 (18): : 10064 - 10071
  • [43] Preparation of Monodisperse and Spherical Rutile VO2 Fine Particles
    Yamamoto, Shinpei
    Kasai, Naoko
    Shimakawa, Yuichi
    CHEMISTRY OF MATERIALS, 2009, 21 (02) : 198 - 200
  • [44] Hydrothermal synthesis of single-crystal VO2(B) nanobelts
    Zhang, Kai-Feng
    Bao, Shu-Juan
    Liu, Xiang
    Shi, Jin
    Su, Zhong-Xing
    Li, Hu-Lin
    MATERIALS RESEARCH BULLETIN, 2006, 41 (11) : 1985 - 1989
  • [45] Growth mechanism of VO2(B) powders under hydrothermal conditions
    Bi, Ai-Hong
    Zhu, Jin-Hua
    Wen, Qing-Zhen
    Li, Zhi-Sheng
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2010, 37 (12): : 72 - 76
  • [46] Hydrothermal Synthesis and Characterization of Mn-Doped VO2 Nanowires
    G. Long
    David Matatov
    Acher Suissa
    Elmustapha Feddi
    M. EL Yadri
    Kawtar Feddi
    M. Sadoqi
    MRS Advances, 2019, 4 : 829 - 836
  • [47] Preparation and characterization of SiO2/VO2 composite particles
    Bi, Aihong
    Zhu, Jinhua
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 797 - 800
  • [48] Template-free hydrothermal synthesis of VO2 hollow microspheres
    Kong, F. Y.
    Li, M.
    Yao, X. Y.
    Xu, J. M.
    Wang, A. D.
    Liu, Z. P.
    Li, G. H.
    CRYSTENGCOMM, 2012, 14 (11): : 3858 - 3861
  • [49] Machine learning guided hydrothermal synthesis of thermochromic VO2 nanoparticles
    Chen, Yongxing
    Ji, Haining
    Lu, Mingying
    Liu, Bin
    Zhao, Yong
    Ou, Yangyong
    Wang, Yi
    Tao, Jundong
    Zou, Ting
    Huang, Yan
    Wang, Junlong
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 30794 - 30800
  • [50] Hydrothermal Synthesis and Characterization of Mn-Doped VO2 Nanowires
    Long, G.
    Matatov, David
    Suissa, Acher
    Feddi, Elmustapha
    El Yadri, M.
    Feddi, Kawtar
    Sadoqi, M.
    MRS ADVANCES, 2019, 4 (14) : 829 - 836