Intrusion detection using an ensemble of intelligent paradigms

被引:199
|
作者
Mukkamala, S [1 ]
Sung, AH
Abraham, A
机构
[1] New Mexico Inst Min & Technol, Dept Comp Sci, Socorro, NM 87801 USA
[2] Oklahoma State Univ, Dept Comp Sci, Tulsa, OK USA
基金
美国国家科学基金会;
关键词
computer security; support vector machines; network security;
D O I
10.1016/j.jnca.2004.01.003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Soft computing techniques are increasingly being used for problem solving. This paper addresses using an ensemble approach of different soft computing and hard computing techniques for intrusion detection. Due to increasing incidents of cyber attacks, building effective intrusion detection systems are essential for protecting information systems security, and yet it remains an elusive goal and a great challenge. We studied the performance of Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Multivariate Adaptive Regression Splines (MARS). We show that an ensemble of ANNs, SVMs and MARS is superior to individual approaches for intrusion detection in terms of classification accuracy. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 50 条
  • [31] SENMQTT-SET: An Intelligent Intrusion Detection in IoT-MQTT Networks Using Ensemble Multi Cascade Features
    Siddharthan, Hariprasad
    Deepa, T.
    Chandhar, Prabhu
    IEEE ACCESS, 2022, 10 : 33095 - 33110
  • [32] An intelligent intrusion detection system
    Nevrus Kaja
    Adnan Shaout
    Di Ma
    Applied Intelligence, 2019, 49 : 3235 - 3247
  • [33] Intelligent agents for intrusion detection
    Helmer, GG
    Wong, JSK
    Honavar, V
    Miller, L
    1998 IEEE INFORMATION TECHNOLOGY CONFERENCE, PROCEEDINGS, 1998, : 121 - 124
  • [34] Intelligent intrusion detection system
    Lee, KC
    Mikhailov, L
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 497 - 502
  • [35] An intelligent intrusion detection system
    Kaja, Nevrus
    Shaout, Adnan
    Ma, Di
    APPLIED INTELLIGENCE, 2019, 49 (09) : 3235 - 3247
  • [36] Immunocomputing for intelligent intrusion detection
    Tarakanov, Alexander O.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2008, 3 (02) : 22 - 30
  • [37] Intelligent phishing website detection using classification ensemble
    Zhuang, Wei-Wei
    Ye, Yan-Fang
    Li, Tao
    Jiang, Qing-Shan
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2011, 31 (10): : 2008 - 2020
  • [38] Modeling intrusion detection system using hybrid intelligent systems
    Peddabachigari, Sandhya
    Abraham, Ajith
    Grosan, Crina
    Thomas, Johnson
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2007, 30 (01) : 114 - 132
  • [39] AN INTELLIGENT NETWORK INTRUSION DETECTION USING DATA MINING TECHNIQUES
    Shukran, Mohd Afizi Mohd
    Maskat, Kamaruzaman
    JURNAL TEKNOLOGI, 2015, 76 (12): : 127 - 131
  • [40] Intelligent intrusion detection systems using artificial neural networks
    Shenfield, Alex
    Day, David
    Ayesh, Aladdin
    ICT EXPRESS, 2018, 4 (02): : 95 - 99