Numerical solution of first passage problems using an approximate Chapman-Kolmogorov relation

被引:9
|
作者
Sharp, WD [1 ]
Allen, EJ [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
D O I
10.1016/S0266-8920(97)00031-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new deterministic numerical method for solving first passage time problems is described, analyzed and computationally tested. The method is based on recursively solving an integral equation for the reliability function. The integral equation is derived from the Chapman-Kolmogorov relation and involves an approximation to the Green's function for the forward Kolmogorov equation. An error analysis yields estimates of convergence rates. Numerical experiments indicate that the method is stable and can accurately approximate the reliability function and first passage times. (C) 1998 Published by Elsevier Science Limited.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 50 条
  • [31] AN APPROXIMATE SOLUTION TO GRAVITY INVERSION PROBLEMS USING THE NEWTON-KANTOROVICH METHOD
    BOYKLOV, IV
    SHCHUKINA, VE
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1989, (11): : 67 - 78
  • [32] Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
    Borzabadi, Akbar H.
    Fard, Omid S.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 19, 2007, 19 : 446 - 449
  • [33] A solution to linear estimation problems using approximate Karhunen-Loeve expansions
    Navarro-Moreno, J
    Ruiz-Molina, JC
    Valderrama, MJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1677 - 1682
  • [34] A fractional PDE for first passage time of time-changed Brownian motion and its numerical solution
    Abundo, M.
    Ascione, G.
    Carfora, M. F.
    Pirozzi, E.
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 (155) : 103 - 118
  • [35] NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS USING SPECTRAL TECHNIQUES
    SU, YY
    KHOMAMI, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) : 297 - 305
  • [36] NUMERICAL-SOLUTION OF TORSION PROBLEMS, USING CONTINUOUS ELEMENTS
    PUSENJAK, R
    OBLAK, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (06): : T489 - T493
  • [37] The numerical solution of elliptic problems using compactly supported wavelets
    Hutchcraft, WE
    Harrison, LA
    Gordon, RK
    Lee, JF
    THIRTIETH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 1998, : 102 - 106
  • [38] Numerical solution for fractional variational problems using the Jacobi polynomials
    Khosravian-Arab, Hassan
    Almeida, Ricardo
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (21) : 6461 - 6470
  • [39] NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS USING NONUNIFORM GRIDS
    BROWN, RR
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03): : 475 - 495
  • [40] On the numerical solution of the first and second boundary value problems of mathematical theory of elasticity
    Sh. S. Khubezhty
    L. Yu. Plieva
    Differential Equations, 2007, 43 : 1319 - 1326