On Virasoro Constraints for Orbifold Gromov-Witten Theory

被引:2
|
作者
Jiang, Yunfeng [2 ]
Tseng, Hsian-Hua [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
QUANTUM COHOMOLOGY; CONJECTURE;
D O I
10.1093/imrn/rnp157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Virasoro constraints for orbifold Gromov-Witten theory are described. These constraints are applied to the degree zero, genus zero orbifold Gromov-Witten potentials of the weighted projective stacks P(1, N), P(1, 1, N), and P(1, 1, 1, N) to obtain formulas of descendant cyclic Hurwitz-Hodge integrals.
引用
收藏
页码:756 / 781
页数:26
相关论文
共 50 条
  • [21] Gromov-Witten theory and automorphic forms
    Grünberg, D
    String Theory: From Gauge Interactions to Cosmology, 2006, 208 : 319 - 324
  • [22] Quantum Curve and Bilinear Fermionic Form for the Orbifold Gromov-Witten Theory of P[r]
    Chen, Chong Yao
    Guo, Shuai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (01) : 43 - 80
  • [23] New calculations in Gromov-Witten theory
    Maulik, D.
    Pandharipande, R.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (02) : 469 - 500
  • [24] On Gromov-Witten Theory of Projective Bundles
    Fan, Honglu
    Lee, Yuan-Pin
    MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (01) : 153 - 178
  • [25] Hodge integrals and Gromov-Witten theory
    C. Faber
    R. Pandharipande
    Inventiones mathematicae, 2000, 139 : 173 - 199
  • [26] A topological view of Gromov-Witten theory
    Maulik, D.
    Pandharipande, R.
    TOPOLOGY, 2006, 45 (05) : 887 - 918
  • [27] Logarithmic Gromov-Witten theory with expansions
    Ranganathan, Dhruv
    ALGEBRAIC GEOMETRY, 2022, 9 (06): : 714 - 761
  • [28] The local Gromov-Witten theory of curves
    Bryan, Jim
    Pandharipande, Rahul
    Bryan, Jim
    Faber, C.
    Okounkov, A.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (01) : 101 - 136
  • [29] Gromov-Witten theory of An-resolutions
    Maulik, Davesh
    GEOMETRY & TOPOLOGY, 2009, 13 : 1729 - 1773
  • [30] Hedge integrals and Gromov-Witten theory
    Faber, C
    Pandharipande, R
    INVENTIONES MATHEMATICAE, 2000, 139 (01) : 173 - 199