We report a study of the cholesteric phase in monodisperse suspensions of the rodlike virus fd sterically stabilized with the polymer polyethylene glycol (PEG). After coating the virus with neutral polymers, the phase diagram and nematic order parameter of the fd-PEG system then become independent of ionic strength. Surprisingly, the fd-PEG suspensions not only continue to exhibit a cholesteric phase, which means that the grafted polymer does not screen all chiral interactions between rods, but paradoxically the cholesteric pitch of this sterically stabilized fd-PEG system varies with ionic strength. Furthermore, we observe that the cholesteric pitch decreases with increasing viral contour length, in contrast to theories which predict the opposite trend. Different models of the origin of chirality in colloidal liquid crystals are discussed.