Multi-scale fusion for RGB-D indoor semantic segmentation

被引:5
|
作者
Jiang, Shiyi [1 ]
Xu, Yang [1 ,2 ]
Li, Danyang [1 ]
Fan, Runze [1 ]
机构
[1] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
[2] Guiyang Aluminum Magnesium Design & Res Inst Co L, Guiyang 550009, Peoples R China
来源
SCIENTIFIC REPORTS | 2022年 / 12卷 / 01期
关键词
D O I
10.1038/s41598-022-24836-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In computer vision, convolution and pooling operations tend to lose high-frequency information, and the contour details will also disappear with the deepening of the network, especially in image semantic segmentation. For RGB-D image semantic segmentation, all the effective information of RGB and depth image can not be used effectively, while the form of wavelet transform can retain the low and high frequency information of the original image perfectly. In order to solve the information losing problems, we proposed an RGB-D indoor semantic segmentation network based on multi-scale fusion: designed a wavelet transform fusion module to retain contour details, a nonsubsampled contourlet transform to replace the pooling operation, and a multiple pyramid module to aggregate multi-scale information and context global information. The proposed method can retain the characteristics of multi-scale information with the help of wavelet transform, and make full use of the complementarity of high and low frequency information. As the depth of the convolutional neural network increases without losing the multi-frequency characteristics, the segmentation accuracy of image edge contour details is also improved. We evaluated our proposed efficient method on commonly used indoor datasets NYUv2 and SUNRGB-D, and the results showed that we achieved state-of-the-art performance and real-time inference.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] RGB-D SEMANTIC SEGMENTATION: A REVIEW
    Hu, Yaosi
    Chen, Zhenzhong
    Lin, Weiyao
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [22] DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene Segmentation
    Yuan, Jianzhong
    Zhou, Wujie
    Luo, Ting
    IEEE ACCESS, 2019, 7 : 169350 - 169358
  • [23] Attention-based fusion network for RGB-D semantic segmentation
    Zhong, Li
    Guo, Chi
    Zhan, Jiao
    Deng, JingYi
    NEUROCOMPUTING, 2024, 608
  • [24] Triple fusion and feature pyramid decoder for RGB-D semantic segmentation
    Ge, Bin
    Zhu, Xu
    Tang, Zihan
    Xia, Chenxing
    Lu, Yiming
    Chen, Zhuang
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [25] Self-Enhanced Feature Fusion for RGB-D Semantic Segmentation
    Xiang, Pengcheng
    Yao, Baochen
    Jiang, Zefeng
    Peng, Chengbin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 3015 - 3019
  • [26] Gesture recognition algorithm based on multi-scale feature fusion in RGB-D images
    Sun, Ying
    Weng, Yaoqing
    Luo, Bowen
    Li, Gongfa
    Tao, Bo
    Jiang, Du
    Chen, Disi
    IET IMAGE PROCESSING, 2023, 17 (04) : 1280 - 1290
  • [27] RGBxD: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    NEUROCOMPUTING, 2021, 462 : 568 - 580
  • [28] 3D Semantic Scene Segmentation with Multi-View RGB-D Images in Indoor Environments
    Bae H.-L.
    Kim I.
    Journal of Institute of Control, Robotics and Systems, 2023, 29 (03) : 235 - 244
  • [29] RGB-D Salient Object Detection via Feature Fusion and Multi-scale Enhancement
    Wu, Peiliang
    Duan, Liangliang
    Kong, Lingfu
    COMPUTER VISION, CCCV 2015, PT II, 2015, 547 : 359 - 368
  • [30] RGB-D Gate-guided edge distillation for indoor semantic segmentation
    Wenbin Zou
    Yingqing Peng
    Zhengyu Zhang
    Shishun Tian
    Xia Li
    Multimedia Tools and Applications, 2022, 81 : 35815 - 35830