DATA FUSION FOR IMPROVING THERMAL EMISSIVITY SEPARATION FROM HYPERSPECTRAL DATA

被引:0
|
作者
Shimoni, M. [1 ]
Haelterman, R. [2 ]
Lodewyckx, P. [3 ]
机构
[1] Royal Mil Acad, Signal & Image Ctr SIC RMA, Brussels, Belgium
[2] Royal Mil Acad, Dept Math, Brussels, Belgium
[3] Royal Mil Acad, Dept Chem, Brussels, Belgium
关键词
Thermal hyperspectral; Land Surface Temperature (LST); Land Surface Emissivity (LSE); Temperature Emissivity Separation (TES); Digital Elevation Model (DEM); TEMPERATURE; ALGORITHM; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are common retrievals from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. In this study we propose a new method which integrates 3D surface information from LIDAR data in an attempt to improve the temperature and emissivity separation (TES) procedure for thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.
引用
收藏
页码:2955 / 2958
页数:4
相关论文
共 50 条
  • [31] Report on the 2014 IEEE GRSS Data Fusion Contest: Multiresolution Fusion of Thermal Hyperspectral and VIS Data
    Moser, Gabriele
    Tuia, Devis
    Shimoni, Michal
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2014, 2 (03): : 37 - 39
  • [32] Urban Classification by the Fusion of Thermal Infrared Hyperspectral and Visible Data
    Li, Jiayi
    Zhang, Hongyan
    Guo, Min
    Zhang, Liangpei
    Shen, Huanfeng
    Du, Qian
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2015, 81 (12): : 901 - 911
  • [33] DROACOR® -THERMAL: AUTOMATED TEMPERATURE/EMISSIVITY RETRIEVAL FOR DRONE BASED HYPERSPECTRAL IMAGING DATA
    Schlaepfer, D.
    Richter, R.
    Popp, C.
    Nygren, P.
    [J]. XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 429 - 434
  • [34] Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces
    Gao, C. X.
    Qian, Y. G.
    Wang, N.
    Ma, L. L.
    Jiang, X. G.
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [35] Bathymetry from fusion of airborne hyperspectral and laser data
    Kappus, ME
    Davis, CO
    Rhea, WJ
    [J]. IMAGING SPECTROMETRY IV, 1998, 3438 : 40 - 51
  • [36] Blind separation of component information from hyperspectral data
    Institute of RS and GIS, Peking University, Beijing 100871, China
    [J]. Beijing Daxue Xuebao Ziran Kexue Ban, 2008, 6 (921-926):
  • [37] Evaluation of five algorithms for extracting soil emissivity from hyperspectral FTIR data
    Cheng, Jie
    Xiao, Qing
    Li, Xiaowen
    Liu, Qinhuo
    Du, Yongming
    Nie, Aixiu
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3146 - +
  • [38] AN INVERSION FOR EMISSIVITY TEMPERATURE SEPARATION WITH ASTER DATA
    MATSUMOTOMORIYAMA, M
    ARAI, K
    [J]. REMOTE SENSING OF EARTHS SURFACE AND ATMOSPHERE, 1993, 14 (03): : 67 - 70
  • [39] New framework for land surface temperature and emissivity inversion based on hyperspectral thermal infrared data
    Li, Xiujuan
    Wu, Hua
    Ni, Li
    Zhang, Yuze
    Jiang, Xiaoguang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023,
  • [40] A neural network technique for atmospheric compensation and temperature/emissivity separation using LWIR/MWIR hyperspectral data
    Blackwell, WJ
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 604 - 615