Using Natural Language Processing to Identify Effective Influencers

被引:1
|
作者
Fang, Xing [1 ]
Wang, Tianfu [2 ]
机构
[1] Tongji Univ, Mkt, Shanghai, Peoples R China
[2] Peking Univ, Sch Journalism & Commun, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
关键词
influencer marketing; social media; online retailing; natural language processing; personality; SOCIAL MEDIA; PERSONALITY; IDENTIFICATION; NETWORKS; IMPACT;
D O I
10.1177/14707853221101565
中图分类号
F [经济];
学科分类号
02 ;
摘要
Identifying the right influencers for brands is often the starting point for a successful influencer campaign. However, influencer identification is understudied, and most previous studies have only discussed visible characteristics of influencers and their social networks, overlooking content-based metrics. Combining interdisciplinary theories and techniques from marketing, linguistics, and computer science, we propose a data-driven automated text analysis framework to identify characteristics of effective influencers using influencer posts. Specifically, we propose a model that incorporates influencer personality traits captured by natural language processing, accounting for traditional covariates, such as network structure and follower engagement. In addition, we use a dataset that attributes influencer social media activities to customer purchases to address fake engagement and showcase our automated textual analysis. The proposed framework can help marketers develop influencer profiles and predict optimal influencers for their campaigns.
引用
收藏
页码:611 / 629
页数:19
相关论文
共 50 条
  • [21] Natural Language Processing to identify pneumonia from radiology reports
    Dublin, Sascha
    Baldwin, Eric
    Walker, Rod L.
    Christensen, Lee M.
    Haug, Peter J.
    Jackson, Michael L.
    Nelson, Jennifer C.
    Ferraro, Jeffrey
    Carrell, David
    Chapman, Wendy W.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2013, 22 (08) : 834 - 841
  • [22] Identify the Semantic Meaning of Service Rules with Natural Language Processing
    Ye, Xinfeng
    [J]. 2016 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT), 2016, : 63 - 68
  • [23] Indexed Natural Language Processing to Identify Adenoma Detection RATES
    Imler, Timothy D.
    Imperiale, Thomas F.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2015, 81 (05) : AB215 - AB216
  • [24] FOOD ALLERGY AND INFORMATICS: USING NATURAL LANGUAGE PROCESSING TO IDENTIFY CLINICAL PREDICTORS IN PROGRESS NOTES
    Bilaver, L.
    Wang, H.
    Naidech, A.
    Luo, Y.
    Das, R.
    Sehgal, S.
    Gupta, R.
    [J]. ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2021, 127 (05) : S41 - S42
  • [25] IDENTIFY PATIENTS WITH PYRUVATE KINASE DEFICIENCY USING NATURAL LANGUAGE PROCESSING ON ELECTRONIC MEDICAL RECORDS
    Liu, S.
    Shi, L.
    Lin, Y.
    Zhang, Y.
    Hong, D.
    Shao, Y.
    [J]. VALUE IN HEALTH, 2020, 23 : S329 - S329
  • [26] Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data
    McDermott, Sean P.
    Wasan, Ajay D.
    [J]. JOURNAL OF PAIN RESEARCH, 2023, 16 : 2133 - 2140
  • [27] Using Natural Language Processing to Identify Patients with Immune Checkpoint Inhibitor-Associated Myocarditis
    Lu, D. J.
    Kamrava, M.
    McArthur, H. L.
    Reckamp, K.
    Tamarappoo, B.
    Atkins, K. M.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E770 - E771
  • [28] Using natural language processing (NLP) tools to identify veterans with metastatic prostate cancer (mPCa)
    Alba, Patrick R.
    Lynch, Julie Ann
    Gao, Anthony
    Lee, Kyung Min
    Anglin-Foote, Tori
    Robison, Brian
    Shelton, Jeremy B.
    Efimova, Olga
    Patterson, Olga V.
    Duvall, Scott L.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (06)
  • [29] Using natural language processing to identify opioid use disorder in electronic health record data
    Singleton, Jade
    Li, Chengxi
    Akpunonu, Peter D.
    Abner, Erin L.
    Kucharska-Newton, Anna M.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 170
  • [30] Relation Detection to Identify Stroke Assertions from Clinical Notes Using Natural Language Processing
    Yang, Audrey
    Kamien, Sam
    Davoudi, Anahita
    Hwang, Sy
    Gandhi, Meet
    Urbanowicz, Ryan
    Mowery, Danielle
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 619 - 623