TREES WITH MAXIMUM SUM OF THE TWO LARGEST LAPLACIAN EIGENVALUES

被引:0
|
作者
Zheng, Yirong [1 ]
Li, Jianxi [2 ]
Chang, Sarula [3 ]
机构
[1] Xiamen Univ Technol, Sch Math & Stat, Xiamen, Fujian, Peoples R China
[2] Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Fujian, Peoples R China
[3] Inner Mongolia Agr Univ, Coll Sci, Hohhot, Inner Mongolia, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Tree; Laplacian Eigenvalue; Sum; BROUWERS CONJECTURE; SIGNLESS LAPLACIAN; GRAPH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a tree of order n and S-2(T) be the sum of the two largest Laplacian eigenvalues of T. Fritscher et al. proved that for any tree T of order n, S-2(T) <= n + 2 - 2/n. Guan et al. determined the tree with maximum S-2(T) among all trees of order n. In this paper, we characterize the trees with S-2(T) >= n + 1 among all trees of order n except some trees. Moreover, among all trees of order n, we also determine the first [ n-2/2 j trees according to their S-2(T). This extends the result of Guan et al.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [31] On the sum of Laplacian eigenvalues of graphs
    Haemers, W. H.
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2214 - 2221
  • [32] On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph
    Ashraf, Firouzeh
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1314 - 1320
  • [33] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446
  • [34] ON THE LARGEST KTH EIGENVALUES OF TREES
    SHAO, JY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 221 : 131 - 157
  • [35] Ordering trees by their largest eigenvalues
    Lin, Wenshui
    Guo, Xiaofeng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 450 - 456
  • [36] Ordering trees by their largest eigenvalues
    Chang, A
    Huang, QX
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 (SUPP) : 175 - 184
  • [37] On the distribution of Laplacian eigenvalues of trees
    Braga, Rodrigo O.
    Rodrigues, Virginia M.
    Trevisan, Vilmar
    DISCRETE MATHEMATICS, 2013, 313 (21) : 2382 - 2389
  • [38] Nordhaus-Gaddum type inequalities for the two largest Laplacian eigenvalues
    Grijo, Rodrigo
    de Lima, Leonardo
    Oliveira, Carla
    Porto, Guilherme
    Trevisan, Vilmar
    DISCRETE APPLIED MATHEMATICS, 2019, 267 : 176 - 183
  • [39] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [40] ON THE SUM OF THE LARGEST EIGENVALUES OF A SYMMETRICAL MATRIX
    OVERTON, ML
    WOMERSLEY, RS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 41 - 45