Statistical analysis of scars in stadium billiard

被引:18
|
作者
Li, BW [1 ]
Hu, B
机构
[1] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong
[2] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong
[3] Univ Maribor, Ctr Appl Math & Theoret Phys, SLO-2000 Maribor, Slovenia
[4] Univ Houston, Dept Phys, Houston, TX 77204 USA
来源
关键词
D O I
10.1088/0305-4470/31/2/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, by using our improved plane wave decomposition method, we study the scars in the eigenfunctions of the stadium billiard from a very low state to as high as about the 1 millionth state. In the systematic searching for scars of various types, we have used the approximate criterion based on the quantization of the classical action along the unstable periodic orbit supporting the scar. We have analysed the profile of the integrated probability density along the orbit. We found that the maximal integrated intensity of different types of scars scales in different way with the (h) over bar, which confirms qualitatively and quantitatively the existing theories of scars such as that of Bogomolny and Robnik.
引用
收藏
页码:483 / 504
页数:22
相关论文
共 50 条
  • [31] VERTICAL MOTION AND SCARRED EIGENFUNCTIONS IN THE STADIUM BILLIARD
    CHRISTOFFEL, KM
    BRUMER, P
    [J]. PHYSICAL REVIEW A, 1985, 31 (05): : 3466 - 3467
  • [32] Lattice scars: surviving in an open discrete billiard
    Fernandez-Hurtado, Victor
    Mur-Petit, Jordi
    Jose Garcia-Ripoll, Juan
    Molina, Rafael A.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [33] DISTRIBUTION OF EIGENMODES IN A SUPERCONDUCTING STADIUM BILLIARD WITH CHAOTIC DYNAMICS
    GRAF, HD
    HARNEY, HL
    LENGELER, H
    LEWENKOPF, CH
    RANGACHARYULU, C
    RICHTER, A
    SCHARDT, P
    WEIDENMULLER, HA
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (09) : 1296 - 1299
  • [34] ROLE OF THE EDGE ORBITS IN THE SEMICLASSICAL QUANTIZATION OF THE STADIUM BILLIARD
    ALONSO, D
    GASPARD, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05): : 1599 - 1607
  • [35] The Distribution of Localization Measures of Chaotic Eigenstates in the Stadium Billiard
    Batistic, B.
    Lozej, C.
    Robnik, M.
    [J]. NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (01): : 17 - 32
  • [36] An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
    Jernej Činč
    Serge Troubetzkoy
    [J]. Journal of Statistical Physics, 190
  • [37] Ensemble separation and stickiness influence in a driven stadium-like billiard: A Lyapunov exponents analysis
    Palmero, Matheus S.
    Livorati, Andre L. P.
    Caldas, Ibere L.
    Leonel, Edson D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 65 : 248 - 259
  • [38] Experimental versus numerical eigenvalues of a Bunimovich stadium billiard:: A comparison
    Alt, H
    Dembowski, C
    Gräf, HD
    Hofferbert, R
    Rehfeld, H
    Richter, A
    Schmit, C
    [J]. PHYSICAL REVIEW E, 1999, 60 (03): : 2851 - 2857
  • [39] Chaotic dynamics of the elliptical stadium billiard in the full parameter space
    Lopac, V.
    Mrkonjic, I.
    Pavin, N.
    Radic, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 88 - 101
  • [40] LONG-TIME SEMICLASSICAL DYNAMICS OF CHAOS - THE STADIUM BILLIARD
    TOMSOVIC, S
    HELLER, EJ
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 282 - 299