Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy

被引:0
|
作者
Xue, X. [1 ]
Ding, Y. [1 ]
Shi, J. [2 ]
Hao, X. [2 ]
Li, X. [1 ]
Li, D. [1 ]
Wu, Y. [1 ]
An, H. [2 ]
Wei, W. [1 ]
Jiang, M. [3 ]
Wang, X. [4 ]
机构
[1] Hubei Canc Hosp, Wuhan, Peoples R China
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[4] Rutgers Canc Inst New Jersey, New Brunswick, NJ USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SU-IePD-TR
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Cone-beam CT based dose calculation in the thorax region
    Kaplan, L. P.
    Hoffmann, L.
    Moller, D. S.
    Elstrom, U. V.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S210 - S211
  • [42] CBCT-based synthetic CT image generation using a diffusion model for CBCT-guided lung radiotherapy
    Chen, Xiaoqian
    Qiu, Richard L. J.
    Peng, Junbo
    Shelton, Joseph W.
    Chang, Chih-Wei
    Yang, Xiaofeng
    Kesarwala, Aparna H.
    MEDICAL PHYSICS, 2024, 51 (11) : 8168 - 8178
  • [43] Influence of beam width of cone beam CT (CBCT) scan on effective dose
    Abuhaimed, A.
    Martin, C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1538 - S1539
  • [44] An Evaluation of Techniques for Dose Calculation on Cone Beam CT
    Giacometti, V.
    King, R. B.
    Agnew, C. E.
    Irvine, D. M.
    Jain, S.
    Hounsell, A. R.
    McGarry, C. K.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S975 - S975
  • [45] Deep learning-based synthetic-CT generation in radiotherapy and PET: A review
    Spadea, Maria Francesca
    Maspero, Matteo
    Zaffino, Paolo
    Seco, Joao
    arXiv, 2021,
  • [46] Synthetic CT generation based on MRI of nasopharyngeal carcinoma using convolutional neural network
    Wang, Y.
    Zhang, X.
    Liu, C.
    Deng, W.
    RADIOTHERAPY AND ONCOLOGY, 2019, 141 : S31 - S32
  • [47] A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma
    Li, Yinghui
    Zhu, Jinhan
    Liu, Zhibin
    Teng, Jianjian
    Xie, Qiuying
    Zhang, Liwen
    Liu, Xiaowei
    Shi, Jinping
    Chen, Lixin
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (14):
  • [48] Generation of synthetic CT with Deep Learning for Magnetic Resonance Guided Radiotherapy
    Hernandez, Armando Garcia
    Fau, Pierre
    Rapacchi, Stanislas
    Wojak, Julien
    Mailleux, Hugues
    Benkreira, Mohamed
    Adel, Mouloud
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 368 - 371
  • [49] Generation of synthetic CT from CBCT using deep learning approaches for head and neck cancer patients
    Aouadi, Souha
    Yoganathan, S. A.
    Torfeh, Tarraf
    Paloor, Satheesh
    Caparrotti, Palmira
    Hammoud, Rabih
    Al-Hammadi, Noora
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (05)
  • [50] Raystation KV cone-beam CT radiotherapy dose calculation: toward clinical dose tracking
    Snir, Jonatan
    Murrell, Donna
    Fakir, Hatim
    MEDICAL PHYSICS, 2017, 44 (08) : 4380 - 4380