Detection of Object Carried Using Spatio-temporal Pattern and Local Directional Pattern Descriptor

被引:0
|
作者
Su, Han [1 ,2 ]
Wang, Wenjie [2 ,3 ]
机构
[1] Sichuan Normal Univ, Key Lab Virtual Real & Visual Comp Sichuan, Chengdu 610066, Sichuan, Peoples R China
[2] Sichuan Normal Univ, Coll Comp Sci, Chengdu 610101, Sichuan, Peoples R China
[3] Chengdu Univ, Chengdu 610106, Sichuan, Peoples R China
关键词
carrying object detection; silhouette; the width imag; spatio-temporal analysis; local texture pattern descriptor; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel method of carried object detection based on silhouette width and spatio-temporal analysis is proposed in this paper. The width vector of silhouette is calculated to characterize the spatial feature and the width image is adopted to preserve the temporal features. The width image which is considered as the texture image represents the walking sequence of pedestrian in a grey-level image. For analyzing the texture features, the local directional pattern code is used to encode the local properties and the local texture pattern descriptor is applied to capture the global characters. Chi-square distance equation is exploited to measure the difference between descriptors. Experimental results show that the width image is an effective and efficient representation, the local directional pattern descriptor is robust and insensitive to noise, and our method is effective.
引用
收藏
页码:1598 / 1603
页数:6
相关论文
共 50 条
  • [1] Space object identification - Using spatio-temporal pattern recognition
    Brandstrom, GW
    Ruck, DW
    Rogers, S
    Stribling, B
    [J]. APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS II, 1996, 2760 : 475 - 486
  • [2] Spatio-temporal pattern detection using dynamic Bayesian networks
    Denis, N
    Jones, E
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4533 - 4538
  • [3] Spatio-Temporal Change Detection Using Granger Sequence Pattern
    Pavasant, Nat
    Numao, Masayuki
    Fukui, Ken-ichi
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5202 - 5203
  • [4] Face Spoofing Video Detection Using Spatio-Temporal Statistical Binary Pattern
    Zhang, Ying
    Dubey, Rohit Kumar
    Hua, Guang
    Thing, Vrizlynn. L. L.
    [J]. PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0309 - 0314
  • [5] Local Directional Texture Pattern image descriptor
    Rivera, Adin Ramrez
    Castillo, Jorge Rojas
    Chae, Oksam
    [J]. PATTERN RECOGNITION LETTERS, 2015, 51 : 94 - 100
  • [6] UNDERSTANDING THE SPATIO-TEMPORAL PATTERN OF TWEETS
    Li, Yue
    Shan, Jie
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2013, 79 (09): : 769 - 773
  • [7] Understanding the spatio-temporal pattern of tweets
    [J]. 1600, American Society for Photogrammetry and Remote Sensing, 5410 Grosvenor Lane, Suite 210, Bethesda, MD 20814-2160, United States (79):
  • [8] Cascading Spatio-Temporal Pattern Discovery
    Mohan, Pradeep
    Shekhar, Shashi
    Shine, James A.
    Rogers, James P.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (11) : 1977 - 1992
  • [9] A Proposal of Spatio-Temporal Pattern Queries
    Gorawski, Marcin
    Jureczek, Pawel
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 587 - 593
  • [10] A Large Scale Crowd Density Classification using Spatio-Temporal Local Binary Pattern
    Lamba, Sonu
    Nain, Neeta
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS (SITIS), 2017, : 296 - 302