Spatio-Temporal Change Detection Using Granger Sequence Pattern

被引:0
|
作者
Pavasant, Nat [1 ]
Numao, Masayuki [2 ]
Fukui, Ken-ichi [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka, Japan
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a method to detect changes in causal relations over a multi-dimensional sequence of events. Cluster Sequence Mining algorithm was modified to extract causal relations in the form of g-patterns: a pair of clusters of events that have their occurrence time determined by Granger causality. This paper also proposed the pattern time signature, a probabilistic density function of the cluster sequence occurring at any given time. Synthetic data were used for validation. The result shows that the proposed algorithm can correctly identify the changes in causal relations even under noisy data.
引用
收藏
页码:5202 / 5203
页数:2
相关论文
共 50 条
  • [1] Modeling Spatio-temporal Change Pattern using Mathematical Morphology
    Das, Monidipa
    Ghosh, Soumya K.
    [J]. PROCEEDINGS OF THE THIRD ACM IKDD CONFERENCE ON DATA SCIENCES (CODS), 2016,
  • [2] Spatio-temporal pattern detection using dynamic Bayesian networks
    Denis, N
    Jones, E
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4533 - 4538
  • [3] Video copy detection using spatio-temporal sequence matching
    Kim, C
    [J]. STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2004, 2004, 5307 : 70 - 79
  • [4] Spatio-temporal Granger causality: A new framework
    Luo, Qiang
    Lu, Wenlian
    Cheng, Wei
    Valdes-Sosa, Pedro A.
    Wen, Xiaotong
    Ding, Mingzhou
    Feng, Jianfeng
    [J]. NEUROIMAGE, 2013, 79 : 241 - 263
  • [5] A solution for change detection in spatio-temporal database
    Wang, Huibing
    Tang, Xinming
    Shi, Shaoyu
    [J]. GEOINFORMATICS 2007: GEOSPATIAL INFORMATION SCIENCE, PTS 1 AND 2, 2007, 6753
  • [6] Detection of Object Carried Using Spatio-temporal Pattern and Local Directional Pattern Descriptor
    Su, Han
    Wang, Wenjie
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 1598 - 1603
  • [7] SPATIO-TEMPORAL PATTERN ANALYSIS FOR REGIONAL CLIMATE CHANGE USING MATHEMATICAL MORPHOLOGY
    Das, M.
    Ghosh, S. K.
    [J]. ISPRS INTERNATIONAL WORKSHOP ON SPATIOTEMPORAL COMPUTING, 2015, : 185 - 192
  • [8] Efficient STMPM(Spatio-Temporal Moving Pattern Mining) Using Moving Sequence Tree
    Lee, YonSik
    Ko, Hyun
    [J]. NCM 2008: 4TH INTERNATIONAL CONFERENCE ON NETWORKED COMPUTING AND ADVANCED INFORMATION MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 432 - 437
  • [9] Face Spoofing Video Detection Using Spatio-Temporal Statistical Binary Pattern
    Zhang, Ying
    Dubey, Rohit Kumar
    Hua, Guang
    Thing, Vrizlynn. L. L.
    [J]. PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0309 - 0314
  • [10] LANDSLIDE CHANGE DETECTION BASED ON SPATIO-TEMPORAL CONTEXT
    Huang Qingqing
    Meng Yu
    Chen Jingbo
    Yue Anzhi
    Lin Lei
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1095 - 1098