Thermodynamic state and kinetic process: Analysis of grain boundary excess in nano-scale grain growth

被引:6
|
作者
Zhang, K. [1 ]
Chen, Z. [1 ]
Liu, F. [1 ]
Yang, G. C. [1 ]
机构
[1] NW Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
关键词
Nanocrystalline; Grain boundary energy; Segregation; Drag force; Grain growth; SIZE-DEPENDENT SOLUTE; NANOCRYSTALLINE MATERIALS; SOLID-SOLUTION; SEGREGATION; ALLOYS; DRAG; STABILIZATION; STABILITY; METALS; ENERGY;
D O I
10.1016/j.jallcom.2010.04.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Derivation for grain boundary (GB) energy at thermodynamic equilibrium is reviewed. On this basis, the evolution of GB excess and bulk concentration with grain growth, and the relation between thermodynamic state and kinetic process have been discussed, for nanocrystalline materials. A concise description for the stop of grain growth is given in terms of thermodynamic and kinetic analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:L4 / L7
页数:4
相关论文
共 50 条
  • [31] Grain boundary engineering process for nano reinforced aluminum matrix composites
    Chen, Xiao-Hui
    Wang, Fahui
    Zhang, Fayun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [32] Preparation and Grain Growth Kinetic of Nickel Oxide Nano-particles
    Han, Hui
    Ma, Qi Heri
    Lv, Li
    Wang, Xiaojing
    FRONTIER OF NANOSCIENCE AND TECHNOLOGY, 2011, 694 : 133 - 136
  • [33] OBSERVATION OF GRAIN BOUNDARY MIGRATION IN THE GRAIN GROWTH PROCESS BY ECC-ECP TECHNIQUE.
    Shimizu, Ryo
    Harase, Jirou
    Transactions of the Iron and Steel Institute of Japan, 1986, 27 (04)
  • [34] Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4
    Breen, A. J.
    Mouton, I
    Lu, W.
    Wang, S.
    Szczepaniak, A.
    Kontis, P.
    Stephenson, L. T.
    Chang, Y.
    da Silva, A. K.
    Liebscher, C. H.
    Raabe, D.
    Britton, T. B.
    Herbig, M.
    Gault, B.
    SCRIPTA MATERIALIA, 2018, 156 : 42 - 46
  • [35] Abnormal grain growth by solid-state wetting along grain boundary or triple junction
    Hwang, NM
    Lee, SB
    Kim, DY
    SCRIPTA MATERIALIA, 2001, 44 (07) : 1153 - 1160
  • [36] Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics
    Li, Han
    Su, Xianli
    Tang, Xinfeng
    Zhang, Qingjie
    Uher, Ctirad
    Snyder, G. Jeffrey
    Aydemir, Umut
    JOURNAL OF MATERIOMICS, 2017, 3 (04) : 273 - 279
  • [37] Helium induced microstructure damage, nano-scale grain formation and helium retention behaviour of ZrC
    Agarwal, Shradha
    Bhattacharya, Arunodaya
    Trocellier, Patrick
    Zinkle, Steven J.
    ACTA MATERIALIA, 2019, 163 : 14 - 27
  • [38] Kinetic Monte Carlo Simulation of Abnormal Grain Growth in Textured Systems with Anisotropic Grain Boundary Energy and Mobility
    Xu, Haijie
    Shu, Xuedao
    Zuo, Jinrong
    Yin, Anmin
    Wang, Ying
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [39] Thermodynamic and kinetic coupling of a random grid cellular automaton for the simulation of grain growth
    Janssens, KGF
    Vanini, F
    Reissner, JN
    ADVANCED ENGINEERING MATERIALS, 2002, 4 (04) : 200 - 202
  • [40] Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"
    Jiang, Minhong
    Han, Shengnan
    Zhang, Jingwei
    Song, Jiageng
    Hao, Chongyan
    Deng, Manjiao
    Ge, Lingjing
    Gu, Zhengfei
    Liu, Xinyu
    JOURNAL OF CRYSTAL GROWTH, 2018, 483 : 258 - 264