Low-temperature pseudo-phase-transition in an extended Hubbard diamond chain

被引:8
|
作者
Rojas, Onofre [1 ]
de Souza, S. M. [1 ]
Torrico, Jordana [2 ]
Verissimo, L. M. [3 ]
Pereira, M. S. S. [3 ]
Lyra, M. L. [3 ]
机构
[1] Univ Fed Lavras, Dept Fis, BR-37200900 Lavras, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Fis, Caixa Postale 702, BR-30123970 Belo Horizonte, MG, Brazil
[3] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, Alagoas, Brazil
关键词
ONE-DIMENSIONAL MODELS; THERMAL ENTANGLEMENT; QUASI-PHASES; FRUSTRATION; VICINITY;
D O I
10.1103/PhysRevE.103.042123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the extended Hubbard diamond chain with an arbitrary number of particles driven by chemical potential. The interaction between dimer diamond chain and nodal couplings is considered in the atomic limit (no hopping), whereas the dimer interaction includes the hopping term. We demonstrate that this model exhibits a pseudo-transition effect in the low-temperature regime. Here, we explore the pseudo-transition rigorously by analyzing several physical quantities. The internal energy and entropy depict sudden, although continuous, jumps which closely resembles discontinuous or first-order phase-transition. At the same time, the correlation length and specific heat exhibit astonishing strong sharp peaks quite similar to a second-order phase-transition. We associate the ascending and descending parts of the peak with power-law "pseudo-critical" exponents. We determine the pseudo-critical exponents in the temperature range where these peaks are developed, namely, nu = 1 for the correlation length and alpha = 3 for the specific heat. We also study the behavior of the electron density and isothermal compressibility around the pseudo-critical temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] LOW-TEMPERATURE PHASE TRANSITION IN PRC13
    HESSLER, JP
    CARLSON, EH
    JOURNAL OF APPLIED PHYSICS, 1971, 42 (04) : 1316 - &
  • [32] LOW-TEMPERATURE PHASE-TRANSITION IN CSOH AND CSOD
    BASTOW, TJ
    ELCOMBE, MM
    HOWARD, CJ
    SOLID STATE COMMUNICATIONS, 1987, 62 (03) : 149 - 151
  • [33] Low-temperature phase transition in CsInF4
    Paschoal, CWA
    Ayala, AP
    Guedes, I
    Gesland, JY
    SOLID STATE COMMUNICATIONS, 2002, 122 (10) : 549 - 551
  • [34] LOW-TEMPERATURE PHASE-TRANSITION IN CUPROUS FERRITE
    KUBIAK, Y
    MALAFAEV, NT
    MURAKHOVSKY, AA
    PIETRZAK, J
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (05): : 798 - 802
  • [35] Low-Temperature Phase Transition in AgNbO3
    Zhang, Tingsong
    Zhang, Chenyang
    Wang, Ling
    Chai, Yisheng
    Shen, Shipeng
    Sun, Young
    Yuan, Hongming
    Feng, Shouhua
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (06) : 1895 - 1898
  • [36] THE LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF A CHAIN-EXTENDED POLYMER
    REGAN, SE
    GREIG, D
    PHYSICA B, 1990, 165 : 909 - 910
  • [37] Entanglement and quantum phase transition in the extended Hubbard model
    Gu, SJ
    Deng, SS
    Li, YQ
    Lin, HQ
    PHYSICAL REVIEW LETTERS, 2004, 93 (08) : 086402 - 1
  • [38] The low-temperature phase III structure and phase transition behaviour of cyclohexanone
    Ibberson, Richard M.
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2006, 62 : 592 - 598
  • [39] Low-temperature CVD of diamond and NEA surface of diamond
    Hiraki, A
    PHYSICS OF DIAMOND, 1997, 135 : 179 - 193
  • [40] THE PHASE-TRANSITION AND SUPERCONDUCTIVITY OF THE FILMS CONDENSED AT LOW-TEMPERATURE
    CAO, XW
    ZHANG, YH
    KEXUE TONGBAO, 1983, 28 (11): : 1567 - 1567